tumor clearance
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 35)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Po-Hao Feng ◽  
Xiaoxu Wang ◽  
Louise Ferrall ◽  
T.-C. Wu ◽  
Chien-Fu Hung

Tumor antigen-specific T cell function is limited by immune tolerance in the tumor microenvironment. In the tumor microenvironment, tumor cells upregulate PD-L1 expression to promote T cell exhaustion by PD-1/PD-L1 interactions and undergo mutations to avoid being targeted by tumor antigen-specific T cells. Thus, tumor cells escape the immune surveillance by causing immune tolerance. We reason that a chimeric molecule made of a PD-L1-specific antibody linked to a cleavable antigenic peptide can target the antigenic peptide to the tumor microenvironment, resulting in the blockade of the PD-1/PD-L1 pathway and killing tumor cells through the coating of antigenic peptide. Here, we have generated a therapeutic chimeric protein containing the PD-L1 single-chain variable fragment (scFv) linked to a cleavable model cytotoxic T lymphocyte (CTL) epitope: E7 CTL peptide. Our study demonstrated that our chimeric protein (named PDL1-scFv-Fc-RE7) can target PD-L1-expressing tumor cells and enable E7 presentation by releasing cleavable E7 CTL peptide to coat tumor cells, resulting in tumor clearance by E7-specific CD8+ T cells. The presentation of the E7 peptide by cancer cells can then render tumor cells susceptible to the killing of preexisting E7-specific CD8+ T cells and contribute to tumor clearance. Our finding suggests a synergistic approach to not only enhance antigen-specific tumor clearance but also bypass immune tolerance.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Shu-Jyuan Yang ◽  
Hsiao-Ting Huang ◽  
Chung-Huan Huang ◽  
Jui-An Pai ◽  
Chung-Hao Wang ◽  
...  

Aim: 7-Ethyl-10-hydroxycamptothecin (SN-38)-loaded gold nanoshells nanoparticles (HSP@Au NPs) were developed for combined chemo-photothermal therapy to treat colorectal cancer. Materials & methods: SN-38-loaded nanoparticles (HSP NPs) were prepared by the lyophilization-hydration method, and then developed into gold nanoshells. The nanoparticles were characterized and assessed for photothermal properties, cytotoxicity and hemocompatibility in vitro. In vivo anticancer activity was tested in a tumor mouse model. Results: The HSP@Au NPs (diameter 186.9 nm, zeta potential 33.4 mV) led to significant cytotoxicity in cancer cells exposed to a near-infrared laser. Moreover, the HSP@Au NP-mediated chemo-photothermal therapy displayed significant tumor growth suppression and disappearance (25% of tumor clearance rate) without adverse side effects in vivo. Conclusion: HSP@Au NPs may be promising in the treatment of colorectal cancer in the future.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6326
Author(s):  
Uffe Høgh Olesen ◽  
Martin Wiinberg ◽  
Catharina Margrethe Lerche ◽  
Ditte Elisabeth Jæhger ◽  
Thomas Lars Andresen ◽  
...  

The efficacy of anti-programmedcelldeath1therapy (aPD-1), which was recently approved for basal cell carcinoma (BCC) treatment, can be enhanced by adjuvant ablative fractional laser (AFL) in syngeneic murine tumor models. In this explorative study, we aimed to assess locally applied AFL as an adjuvant to systemic aPD-1 treatment in a clinically relevant autochthonous BCC model. BCC tumors (n = 72) were induced in Ptch1+/−K14-CreER2p53fl/fl-mice (n = 34), and the mice subsequently received aPD-1 alone, AFL alone, aPD-1+AFL, or no treatment. The outcome measures included mouse survival time, tumor clearance, tumor growth rates, and tumor immune infiltration. Both aPD-1 and AFL alone significantly increased survival time relative to untreated controls (31 d and 34.5 d, respectively vs. 14 d, p = 0.0348–0.0392). Complementing aPD-1 with AFL further promoted survival (60 d, p = 0.0198 vs. aPD-1) and improved tumor clearance and growth rates. The BCCs were poorly immune infiltrated, but aPD-1 with adjuvant AFL and AFL alone induced substantial immune cell infiltration in the tumors. Similar to AFL alone, combined aPD-1 and AFL increased neutrophil counts (4-fold, p = 0.0242), the proportion of MHCII-positive neutrophils (p = 0.0121), and concordantly, CD4+ and CD8+ T-cell infiltration (p = 0.0061–0.0242). These descriptive results suggest that the anti-tumor response that is generated by aPD-1 with adjuvant AFL is potentially promoted by increased neutrophil and T-cell engraftment in tumors. In conclusion, local AFL shows substantial promise as an adjuvant to systemic aPD-1 therapy in a clinically relevant preclinical BCC model.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 736-736
Author(s):  
Kole Degolier ◽  
Jennifer Cimons ◽  
Michael Yarnell ◽  
Mark Eric Kohler ◽  
Terry J. Fry

Abstract Chimeric antigen receptor (CAR) T cell therapy has emerged as a highly efficacious treatment for B-lineage acute lymphoblastic leukemias (B-ALL). However, downregulation of the CAR-targeted antigen on leukemia cells, predicted to reduce cellular avidity, is associated with post-CAR T cell leukemic relapse following CD22 CAR treatment (Fry et al., Nat. Med., 2017). We have observed reduced function of human CAR T cells against low target antigen site density (Ag Lo) human leukemia in immunodeficient mouse models, relative to CARs responding to high-antigen expressing leukemia. Thus, a better understanding of CAR responses to Ag Lo leukemia could help to increase the durability of remissions. We set out to develop a model system in which we could further interrogate the consequences of low-avidity interactions on CAR immunobiology, generating variants of a murine B-ALL driven by the E2A-PBX fusion protein (E2A) with different levels of target antigen to use in an immunocompetent syngeneic mouse model. We observed impaired expansion (p<0.0001) and tumor clearance (p<0.001) of CAR T cells responding to low-antigen variants of E2A (E2A-Ag Lo) as compared to wildtype E2A expressing high levels of antigen (E2A-WT). While CD8+ CAR T cell (CAR8) transcription factor (TF) expression in response to E2A-Ag Lo versus E2A-WT was largely similar early after CAR infusion, by day 9 post-CAR, CAR8s responding to E2A-Ag Lo exhibited decreased expression of multiple TFs, with Eomes (p<0.01), Irf4 (p<0.001) and Blimp1 (p<0.01) showing the largest magnitude change relative to CAR8s responding to E2A-WT. Additionally, CAR8s from mice bearing E2A-Ag Lo became enriched for cells of a "terminally exhausted" phenotype (Eomes+/PD1 Hi/TOX Hi) by day 11 post-CAR, and negatively-enriched for the "progenitor exhausted" (Tcf1+/PD1 Int) phenotype which can be functionally rescued by anti-PD1 therapy (p<0.0001, p<0.01). These data suggest that continual stimulation by low density antigen leads to a gradual reduction in the ability of CAR8s to mount an effector response, and eventually to T cell states with sub-optimal anti-tumor efficacy. Following in vitro stimulation of human CD22 CARs across a range of leukemic antigen densities, we saw that the percentage of CAR+ cells capable of producing IFNγ and IL2 corresponded to target antigen density (p<0.01, p<0.001). As human CARs are commonly manufactured from heterogenous bulk donor T cells, we hypothesized that antigen sensitivity is impacted by the prior antigen-experience of a given T cell. We predicted that T cells which had encountered cognate antigen through their TCR prior to CAR manufacturing (CAR8 AgEx) would have enhanced capacity to respond to low-avidity stimulation compared to CARs manufactured from naïve CD8+ T cells (CAR8 Naïve). We used a well-characterized ovalbumin vaccination model with OT-I TCR-transgenic T cells, allowing defined control of T cell antigen experience, to generate CAR8 AgEx. We found that CAR8 AgEx were highly antigen-sensitive relative to CAR8 Naïve, showing almost no reduction in numbers of cells capable of producing IFNγ and TNFα in vitro against E2A-Ag Lo as compared to E2A-WT. In vivo, CAR8 AgEx showed near complete depletion of E2A-Ag Lo in bone marrow by day 11 post-CAR, while mice treated with CAR8 Naïve maintained a substantial tumor burden (p<0.01). To test our hypothesis in human cells, we manufactured CD22 CAR T cells from naïve (CD45RO-) versus non-naïve (CD45RO+) starting T cell populations, and again found that CAR AgEx outperformed CAR Naïve against Ag Lo leukemia in production of IFNγ and IL2 in vitro (p<0.001, p<0.01) and in early leukemic clearance in vivo (p<0.0001, day 13). In conclusion, we have established a model to study the immunobiology of the CAR T cell response to Ag Lo B-ALL in an intact host. Preliminary findings indicate impaired expansion and tumor clearance of Ag Lo leukemia, associated with altered CAR T cell transcriptional profiles and features of T cell exhaustion. Furthermore, T cell history prior to CAR manufacturing has a drastic impact on the capacity to respond to Ag Lo leukemia. Future studies with this model will expand our characterization of CAR T cells responding to Ag Lo leukemia, with the goal of optimizing antigen sensitivity. We expect that advancing our understanding on the interplay of antigen density and CAR differentiation status will prove useful in developing more effective iterations of this therapy. Disclosures Fry: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi95-vi95
Author(s):  
Jessica Waibl Polania ◽  
William Tomaszweski ◽  
Alexandra Hoyt-Miggelbrink ◽  
Karolina Woroniecka ◽  
Peter Fecci

Abstract BACKGROUND Glioblastoma (GBM) is the most common primary brain cancer in adults and remains universally lethal. Median survival remains a bleak 15-17 months from time of diagnosis, and current immunotherapeutic efficacy continues to be hindered by the robust immunosuppression present in the GBM microenvironment. T cells, critical for tumor clearance, are particularly affected, and many take on a functionally exhausted phenotype within the tumor. Importantly, two exhaustion states, progenitor and terminal, have been identified in models of chronic infection and cancer. This distinction is particularly relevant, as progenitor exhausted T cells can respond favorably to immune checkpoint blockade, while terminally exhausted T cells are resistant. To date, the dynamics and characteristics of these exhausted populations in GBM remain unclear. RESULTS In an orthotopic murine model of GBM, progenitor and terminal exhausted CD8 T cells were identified by flow cytometry as PD1+SLAMF6+ and PD1+TIM3+, respectively. Using a time-course approach, we detected progenitor exhaustion by day 8 in the tumor, but not in draining lymph nodes. Additionally, we show that the frequency of progenitor exhaustion is highest during early tumor progression, while terminal exhaustion is the most abundant in more advanced tumors ( >14 days). Functional differences between subsets were evaluated via intracellular staining of IFNγ, TNFα, granzyme B, and Ki67. Terminally exhausted T cells displayed higher cytotoxic molecule expression than progenitor exhausted T cells, similar to what has been documented in melanoma models. CONCLUSIONS Our findings identify T cell exhaustion subsets within GBM that require further investigation and may be relevant to overcome current barriers to immunotherapeutic efficacy.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi98-vi98
Author(s):  
Brandyn Castro ◽  
Mark Dapash ◽  
David Hou ◽  
Aida Rashidi ◽  
Deepak Kanojia ◽  
...  

Abstract Glioblastomas (GBM) are characterized by a strong immunosuppressive environment, contributing to their poor prognosis and limited therapeutic response to immunotherapies. B-cells represent a unique opportunity to promote immunotherapy due to their potential to kill tumors by both cellular and humoral immunity. To generate our B-cell-based vaccine (BVax) platform, we activated 41BBL+ B cells from tumor bearing mice or GBM patient blood with BAFF, CD40, and IFNg. We have previously demonstrated that BVax potentiates radiation therapy, temozolomide and checkpoint blockade in murine models of GBM via enhancement of CD8+ T-cell based immunity. The aim of this current study is to evaluate the humoral effector functions of BVax. We examined the antibody (Ab) repertoire in vivo from serum of tumor-bearing B-cell knockout mice treated with BVax or by ex vivo stimulation of patient-derived BVax. Upon systemic administration, BVax infiltrates the tumor where it differentiates into plasmablasts. Murine BVax- and BNaive-derived serum immunoglobulin generated in vivo showed that the majority of murine BVax-derived Ab were IgG isotype, while BNaive mainly produced IgM isotype. Transfer of IgG from BVax treated mice directly into tumors of recipient animals significantly prolonged their survival, demonstrating anti-tumor cytotoxicity directly through humoral immunity. Patient-derived BVax activated ex vivo showed a plasmablast phenotype and the Ab repertoire supports the previous findings seen in our murine model. Our work suggests BVax-derived IgGs role in antibody-dependent cellular cytotoxicity and improved survival in murine models. This function, in addition to its role in cellular immunity against GBM, renders BVax a potentially effective alternative immunotherapeutic option for GBM patients.


Author(s):  
Jhalak Dholakia ◽  
Carly B. Scalise ◽  
Ashwini A. Katre ◽  
Whitney N. Goldsberry ◽  
Selene Meza-Perez ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A644-A644
Author(s):  
Anita Mehta ◽  
Madeline Townsend ◽  
Madisson Oliwa ◽  
Patrice Lee ◽  
Nicholas Saccomano ◽  
...  

BackgroundPoly(ADP-ribose) polymerase inhibitors (PARPi) have improved the outcomes of BRCA-associated breast cancer; however, treatment responses are often not durable. Our preclinical studies demonstrated that PARPi activates the cGAS/STING pathway and recruitment of anti-tumor CD8+ T-cells that are required for tumor clearance [1]. These studies contributed to development of clinical trials testing PARPi plus immune checkpoint blockade (ICB). Unfortunately, early phase trials of PARPi + ICB have not yet suggested efficacy will be superior to PARPi monotherapy. Lack of demonstrated clinical synergy between PARPi + ICB underscores the need to study the tumor microenvironment (TME) during PARPi therapy to identify optimal strategies to enhance T-cell activation. We recently showed that PARPi induces CSF-1R+ suppressive tumor associated macrophages (TAMs) that restrict antitumor immune responses, contributing to PARPi resistance [2]. Removing TAMs with anti-CSF-1R therapy in combination with PARPi significantly enhanced overall survival (OS) compared to PARPi monotherapy in preclinical models [2]. Here, we investigate how modulating TAMs can enhance PARPi + ICB.MethodsMice bearing BRCA1-deficient TNBC (K14-Cre;Brca1f/f;p53f/f) tumors were treated for 98 days with PARPi (Talazoparib) ± small molecule inhibitor of CSF-1R (ARRAY-382; CSF-1Ri) ± anti-PD-1 and then followed for survival. Flow cytometry was employed to elucidate changes in the TME after treatment.ResultsPARPi conferred a significant survival advantage over vehicle treated mice (median OS 33 v. 14 days; p=0.0034) and 2/8 PARPi-treated mice experienced complete tumor clearance at day 98. PARPi + CSF-1Ri treated mice (median OS 140 days) remarkably cleared 7/10 tumors by day 98. The addition of anti-PD-1 to PARPi did not enhance OS compared to PARPi monotherapy. The triple combination of anti-PD-1 + PARPi + CSF-1Ri has not yet significantly enhanced the median OS compared to PARPi + CSF-1Ri (ongoing; 168 v. 140 days); nor did it increase clearance of tumor by day 98 (7/10). However, the triple combination led to superior long term tumor clearance. At day 161 the triple combination exhibited 5/10 tumor free mice compared to 2/10 treated with PARPi + CSF-1Ri. To elucidate how CSR-1Ri enhanced PARPi + ICB responses, flow cytometry was performed and revealed increased expression of the co-stimulatory molecule CD80, reduced tissue resident macrophages (CX3CR1+) and lower CSF-1R expression compared to PARPi + ICB.ConclusionsThese data suggest that targeting immunosuppressive macrophages may induce a favorable anti-tumor immune response and enhance responses to PARPi plus ICB. We are currently evaluating the adaptive immune response in this context.ReferencesPantelidou, C., et al., PARP inhibitor efficacy depends on CD8+ T cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discovery, 2019: p. CD-18-1218.Mehta, A.K., et al., Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat Cancer, 2021. 2(1): p. 66–82.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Carlos Serra-Guillén ◽  
Beatriz Llombart ◽  
Eduardo Nagore ◽  
Carlos Guillén ◽  
Onofre Sanmartín

2021 ◽  
Author(s):  
Natalie Kash ◽  
Sirunya Silapunt

Although surgical therapy continues to be the gold standard for the treatment of basal cell carcinoma given high cure rates and the ability to histologically confirm tumor clearance, there are a number of nonsurgical treatment options that may be considered based on individual tumor characteristics, functional and cosmetic considerations, patient comorbidities and patient preference. Topical 5-fluorouracil 5% cream and imiquimod 5% cream have been US FDA-approved for the treatment of superficial basal cell carcinoma. Additionally, a number of new and emerging topical agents and techniques have been described for the treatment of basal cell carcinoma and will be reviewed herein.


Sign in / Sign up

Export Citation Format

Share Document