scholarly journals New Insights into the Functionality of a Virion-Anchored Host Cell Membrane Protein: CD28 Versus HIV Type 1

2002 ◽  
Vol 169 (5) ◽  
pp. 2762-2771 ◽  
Author(s):  
Jean-François Giguère ◽  
Jean-Sébastien Paquette ◽  
Salim Bounou ◽  
Réjean Cantin ◽  
Michel J. Tremblay
2017 ◽  
Author(s):  
Rahul Chaudhari ◽  
Vishakha Dey ◽  
Aishwarya Narayan ◽  
Shobhona Sharma ◽  
Swati Patankar

The secretory pathway in Plasmodium falciparum has evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) and inhibitors of vesicular transport. As expected, the G protein dependent vesicular fusion inhibitor AlF4- and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPxGl and ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G-protein dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPxGl is localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPxGl. Second, trafficking of apicoplast luminal proteins appear to be independent of G-protein coupled vesicles.


2017 ◽  
Author(s):  
Rahul Chaudhari ◽  
Vishakha Dey ◽  
Aishwarya Narayan ◽  
Shobhona Sharma ◽  
Swati Patankar

The secretory pathway in Plasmodium falciparum has evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) and inhibitors of vesicular transport. As expected, the G protein dependent vesicular fusion inhibitor AlF4- and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPxGl and ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G-protein dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPxGl is localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPxGl. Second, trafficking of apicoplast luminal proteins appear to be independent of G-protein coupled vesicles.


2014 ◽  
Vol 50 (99) ◽  
pp. 15776-15779 ◽  
Author(s):  
Lin Ling Zheng ◽  
Xiao Xi Yang ◽  
Yue Liu ◽  
Xiao Yan Wan ◽  
Wen Bi Wu ◽  
...  

Anin situstrategy for producing quantum dot-labelled respiratory syncytial viruses by incorporating the biotinylated membrane protein of the host cells into mature virions is reported.


2017 ◽  
Author(s):  
Rahul Chaudhari ◽  
Vishakha Dey ◽  
Aishwarya Narayan ◽  
Shobhona Sharma ◽  
Swati Patankar

The secretory pathway in Plasmodium falciparum has evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) and inhibitors of vesicular transport. As expected, the G protein dependent vesicular fusion inhibitor AlF4- and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPxGl and ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G-protein dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPxGl is localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPxGl. Second, trafficking of apicoplast luminal proteins appear to be independent of G-protein coupled vesicles.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3128 ◽  
Author(s):  
Rahul Chaudhari ◽  
Vishakha Dey ◽  
Aishwarya Narayan ◽  
Shobhona Sharma ◽  
Swati Patankar

The secretory pathway inPlasmodium falciparumhas evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) and inhibitors of vesicular transport. As expected, the G protein-dependent vesicular fusion inhibitor AlF4−and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPxGland ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G protein-dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPxGlis localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPxGl; second, trafficking of apicoplast luminal proteins appear to be independent of G protein-coupled vesicles.


2020 ◽  
Author(s):  
Norihiro Kotani ◽  
Takanari Nakano

ABSTRACTCOVID-19 represents a real threat to the global population, and understanding the biological features of the causative virus (SARS-CoV-2) is imperative to aid in mitigating this threat. Analyses of proteins such as primary receptors and co-receptors (co-factors) that are involved in SARS-CoV-2 entry into host cells will provide important clues to help control the virus. Here, we identified host cell membrane protein candidates that were present in proximity to the attachment sites of SARS-CoV-2 spike proteins through the use of proximity labeling and proteomics analysis. The identified proteins represent candidate key factors that may be required for viral entry. Our results indicated that a number of membrane proteins, including DPP4, Cadherin-17, and CD133, were identified to co-localize with cell membrane-bound SARS-CoV-2 spike proteins in Caco-2 cells that were used to expand the SARS-CoV-2 virion. We anticipate that the information regarding these protein candidates will be utilized for the future development of vaccines and antiviral agents against SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document