scholarly journals Candidate screening of host cell membrane proteins involved in SARS-CoV-2 entry

2020 ◽  
Author(s):  
Norihiro Kotani ◽  
Takanari Nakano

ABSTRACTCOVID-19 represents a real threat to the global population, and understanding the biological features of the causative virus (SARS-CoV-2) is imperative to aid in mitigating this threat. Analyses of proteins such as primary receptors and co-receptors (co-factors) that are involved in SARS-CoV-2 entry into host cells will provide important clues to help control the virus. Here, we identified host cell membrane protein candidates that were present in proximity to the attachment sites of SARS-CoV-2 spike proteins through the use of proximity labeling and proteomics analysis. The identified proteins represent candidate key factors that may be required for viral entry. Our results indicated that a number of membrane proteins, including DPP4, Cadherin-17, and CD133, were identified to co-localize with cell membrane-bound SARS-CoV-2 spike proteins in Caco-2 cells that were used to expand the SARS-CoV-2 virion. We anticipate that the information regarding these protein candidates will be utilized for the future development of vaccines and antiviral agents against SARS-CoV-2.

2005 ◽  
Vol 42 (6) ◽  
pp. 788-796 ◽  
Author(s):  
C. A. Cummings ◽  
R. J. Panciera ◽  
K. M. Kocan ◽  
J. S. Mathew ◽  
S. A. Ewing

American canine hepatozoonosis is caused by Hepatozoon americanum, a protozoan parasite, the definitive host of which is the tick, Amblyomma maculatum. Infection of the dog follows ingestion of ticks that harbor sporulated H. americanum oocysts. Following penetration of the intestinal mucosa, sporozoites are disseminated systemically and give rise to extensive asexual multiplication in cells located predominantly in striated muscle. The parasitized canine cells in “onion skin” cysts and in granulomas situated within skeletal muscle, as well as those in peripheral blood leukocytes (PBL), were identified as macrophages by use of fine structure morphology and/or immunohistochemical reactivity with macrophage markers. Additionally, two basic morphologic forms of the parasite were observed in macrophages of granulomas and PBLs. The forms were presumptively identified as merozoites and gamonts. The presence of a “tail” in some gamonts in PBLs indicated differentiation toward microgametes. Recognition of merozoites in PBLs supports the contention that hematogenously redistributed merozoites initiate repeated asexual cycles and could explain persistence of infection for long periods in the vertebrate host. Failure to clearly demonstrate a host cell membrane defining a parasitophorous vacuole may indicate that the parasite actively penetrates the host cell membrane rather than being engulfed by the host cell, as is characteristic of some protozoans.


2014 ◽  
Vol 50 (99) ◽  
pp. 15776-15779 ◽  
Author(s):  
Lin Ling Zheng ◽  
Xiao Xi Yang ◽  
Yue Liu ◽  
Xiao Yan Wan ◽  
Wen Bi Wu ◽  
...  

Anin situstrategy for producing quantum dot-labelled respiratory syncytial viruses by incorporating the biotinylated membrane protein of the host cells into mature virions is reported.


2020 ◽  
Author(s):  
Zheng Zhang ◽  
Sifan Ye ◽  
Aiping Wu ◽  
Taijiao Jiang ◽  
Yousong Peng

AbstractThe virus receptors are key for the viral infection of host cells. Identification of the virus receptors is still challenging at present. Our previous study has shown that human virus receptor proteins have some unique features including high N-glycosylation level, high number of interaction partners and high expression level. Here, a random-forest model was built to identify human virus receptorome from human cell membrane proteins with an accepted accuracy based on the combination of the unique features of human virus receptors and protein sequences. A total of 1380 human cell membrane proteins were predicted to constitute the receptorome of the human-infecting virome. In addition, the combination of the random-forest model with protein-protein interactions between human and viruses predicted in previous studies enabled further prediction of the receptors for 693 human-infecting viruses, such as the Enterovirus, Norovirus and West Nile virus. As far as we know, this study is the first attempt to predict the receptorome for the human-infecting virome and would greatly facilitate the identification of the receptors for viruses.


2002 ◽  
Vol 169 (5) ◽  
pp. 2762-2771 ◽  
Author(s):  
Jean-François Giguère ◽  
Jean-Sébastien Paquette ◽  
Salim Bounou ◽  
Réjean Cantin ◽  
Michel J. Tremblay

2004 ◽  
Vol 10 (5) ◽  
pp. 580-585 ◽  
Author(s):  
Heide Schatten ◽  
Hans Ris

The protozoan parasite Toxoplasma gondii is a representative of apicomplexan parasites that invades host cells through an unconventional motility mechanism. During host cell invasion it forms a specialized membrane-surrounded compartment that is called the parasitophorous vacuole. The interactions between the host cell and parasite membranes are complex and recent studies have revealed in more detail that both the host cell and the parasite membrane contribute to the formation of the parasitophorous vacuole. By using our a new specimen preparation technique that allows three-dimensional imaging of thick-sectioned internal cell structures with high-resolution, low-voltage field emission scanning electron microscopy, we were able to visualize continuous structural interactions of the host cell membrane with the parasite within the parasitophorous vacuole. Fibrous and tubular material extends from the host cell membrane and is connected to parasite membrane components. Shorter protrusions are also elaborated from the parasite. Several of these shorter fine protrusions connect to the fibrous material of the host cell membrane. The elaborate network may be used for modifications of the parasitophorous vacuole membrane that will allow utilization of nutrients from the host cell by the parisite while it is being protected from host cell attacks. The structural interactions between parasite and host cells undergo time-dependent changes, and a fission pore is the most prominent structure left connecting the parasite with the host cell. The fission pore is anchored in the host cell by thick structural components of unknown nature. The new information gained with this technique includes structural details of fibrous and tubular material that is continuous between the parasite and host cell and can be imaged in three dimensions. We present this technique as a tool to investigate more fully the complex structural interactions of the host cell and the parasite residing in the parasitophorous vacuole.


2021 ◽  
Vol 9 ◽  
Author(s):  
Timothy Leong ◽  
Chandhana Voleti ◽  
Zhangli Peng

We developed coarse-grained models of spike proteins in SARS-CoV-2 coronavirus and angiotensin-converting enzyme 2 (ACE2) receptor proteins to study the endocytosis of a whole coronavirus under physiologically relevant spatial and temporal scales. We first conducted all-atom explicit-solvent molecular dynamics simulations of the recently characterized structures of spike and ACE2 proteins. We then established coarse-grained models using the shape-based coarse-graining approach based on the protein crystal structures and extracted the force field parameters from the all-atom simulation trajectories. To further analyze the coarse-grained models, we carried out normal mode analysis of the coarse-grained models to refine the force field parameters by matching the fluctuations of the internal coordinates with the original all-atom simulations. Finally, we demonstrated the capability of these coarse-grained models by simulating the endocytosis of a whole coronavirus through the host cell membrane. We embedded the coarse-grained models of spikes on the surface of the virus envelope and anchored ACE2 receptors on the host cell membrane, which is modeled using a one-particle-thick lipid bilayer model. The coarse-grained simulations show the spike proteins adopt bent configurations due to their unique flexibility during their interaction with the ACE2 receptors, which makes it easier for them to attach to the host cell membrane than rigid spikes.


Microbiology ◽  
2003 ◽  
Vol 149 (9) ◽  
pp. 2513-2527 ◽  
Author(s):  
Takashi Nonaka ◽  
Taku Kuwabara ◽  
Hitomi Mimuro ◽  
Asaomi Kuwae ◽  
Shinobu Imajoh-Ohmi

It is currently unclear whether Shigella kills its phagocytic host cells by apoptosis or necrosis. This study shows that rapid necrosis ensues in macrophage-like cell lines (U937 cells differentiated by all-trans-retinoic acid and J774 cells) infected with the Shigella flexneri strain YSH6000. The infected cells rapidly lose membrane integrity, a typical feature of necrosis, as indicated by the release of the cytoplasmic lactate dehydrogenase and the exposure of phosphatidylserine (PS) associated with the rapid uptake of propidium iodide (PI). The infected cells exhibit DNA fragmentation without nuclear condensation, and substantial involvement of either caspase-3/-7 or caspase-1 was not detected, which is also contrary to what is normally observed in apoptosis. Cytochalasin D potently inhibited Shigella-induced cell death, indicating that only internalized Shigella can cause necrosis. Osmoprotectants such as polyethylene glycols could suppress cell death, suggesting that insertion of a pore by Shigella into the host cell membrane induces the necrosis. The pore was estimated to be 2·87±0·4 nm in diameter. Shigella was also found to be able to induce apoptosis but only in one of the lines tested and under specific conditions, namely U937 cells differentiated with interferon-γ (U937IFN). Caspase-3/-7 but not caspase-1 activation was observed in these infected cells and the exposure of PS occurred without the uptake of PI. An avirulent Shigella strain, wild-type Shigella killed with gentamicin, and even Escherichia coli strain JM109, could also induce apoptosis in U937IFN cells, and cytochalasin D could not prevent apoptosis. It appears therefore that Shigella-induced apoptosis of U937IFN cells is unrelated to Shigella pathogenicity and does not require bacterial internalization. Thus, Shigella can induce rapid necrosis of macrophage-like cells in a virulence-related manner by forming pores in the host cell membrane while some cells can be killed through apoptosis in a virulence-independent fashion.


Sign in / Sign up

Export Citation Format

Share Document