scholarly journals Responsiveness of Naive CD4 T Cells to Polarizing Cytokine Determines the Ratio of Th1 and Th2 Cell Differentiation

2006 ◽  
Vol 176 (3) ◽  
pp. 1553-1560 ◽  
Author(s):  
Natallia Mikhalkevich ◽  
Brian Becknell ◽  
Michael A. Caligiuri ◽  
Michael D. Bates ◽  
Richard Harvey ◽  
...  
1996 ◽  
Vol 184 (2) ◽  
pp. 473-483 ◽  
Author(s):  
T Sornasse ◽  
P V Larenas ◽  
K A Davis ◽  
J E de Vries ◽  
H Yssel

The development of CD4+ T helper (Th) type 1 and 2 cells is essential for the eradication of pathogens, but can also be responsible for various pathological disorders. Therefore, modulation of Th cell differentiation may have clinical utility in the treatment of human disease. Here, we show that interleukin (IL) 12 and IL-4 directly induce human neonatal CD4- T cells, activated via CD3 and CD28, to differentiate into Th1 and Th2 subsets. In contrast, IL-13, which shares many biological activities with IL-4, failed to induce T cell differentiation, consistent with the observation that human T cells do not express IL-13 receptors. Both the IL-12-induced Th1 subset and the IL-4-induced Th2 subset produce large quantities of IL-10, confirming that human IL-10 is not a typical human Th2 cytokine. Interestingly, IL-4-driven Th2 cell differentiation was completely prevented by an IL-4 mutant protein (IL-4.Y124D), indicating that this molecule acts as a strong IL-4 receptor antagonist. Analysis of single T cells producing interferon gamma or IL-4 revealed that induction of Th1 cell differentiation occurred rapidly and required only 4 d of priming of the neonatal CD4+ T cells in the presence of IL-12. The IL-12-induced Th1 cell phenotype was stable and was not significantly affected when repeatedly stimulated in the presence of recombinant IL-4. In contrast, the differentiation of Th2 cells occurred slowly and required not only 6 d of priming, but also additional restimulation of the primed CD4+ T cells in the presence of IL-4. Moreover, IL-4-induced Th2 cell phenotypes were not stable and could rapidly be reverted into a population predominantly containing Th0 and Th1 cells, after a single restimulation in the presence of IL-12. The observed differences in stability of IL-12- and IL-4-induced human Th1 and Th2 subsets, respectively, may have implications for cytokine-based therapies of chronic disease.


2020 ◽  
pp. 1-11
Author(s):  
Tianyue  Wang ◽  
Qianlan Zhou ◽  
Yunxiao Shang

Children exposed to common aeroallergens may develop asthma that progresses into adulthood. Inflammation regulated by T helper 2 (Th2) cells, a specific subpopulation of CD4+ T lymphocytes, is involved in asthmatic injury. Herein, our microarray data indicated that microRNA-451a-5p (miRNA-451a) expression decreased by 4.6-fold and ETS proto-oncogene 1 (ETS1) increased by 2.2-fold in the peripheral blood lymphocytes isolated from asthmatic children (<i>n</i> = 4) as compared to control individuals (<i>n</i> = 4). The negative correlation between miRNA-451a and ETS1 was further validated in 40 CD4+ T cell samples (10 healthy vs. 30 asthmatic samples). In vitro, naïve CD4+ T cells isolated from control individuals were cultured under Th2 cell polarizing condition. miRNA-451a expression decreased while ETS1 increased in CD4+ T cells in the setting of Th2 cell polarization. Moreover, miRNA-451a knockdown enhanced Th2 cell polarization – cells positive for both GATA3 (GATA binding protein 3, a Th2-transcription factor) and CD4 increased, and the generation of Th2 cell cytokines, interleukin (IL)5 and IL13, increased. In contrast, miRNA-451a overexpression inhibited Th2 cell differentiation. Interestingly, dual-Luciferase assay proved ETS1 as a novel target of miRNA-451a. Moreover, enforced expression of ETS1 partially restored miRNA-451a-induced inhibition of IL5 and IL13, and increased the GATA3+CD4+ cell population. Collectively, our work demonstrates that downregulation of miRNA-451a upregulates ETS1 expression in CD4+ T cells, which may contribute to Th2 cell differentiation in pediatric asthma.


2009 ◽  
Vol 206 (2) ◽  
pp. 329-341 ◽  
Author(s):  
Jinfang Zhu ◽  
Todd S. Davidson ◽  
Gang Wei ◽  
Dragana Jankovic ◽  
Kairong Cui ◽  
...  

Growth factor independent 1 (Gfi-1), a transcriptional repressor, is transiently induced during T cell activation. Interleukin (IL) 4 further induces Gfi-1, resulting in optimal Th2 cell expansion. We report a second important function of Gfi-1 in CD4 T cells: prevention of alternative differentiation by Th2 cells, and inhibition of differentiation of naive CD4 T cells to either Th17 or inducible regulatory T (iTreg) cells. In Gfi1−/− Th2 cells, the Rorc, Il23r, and Cd103 loci showed histone 3 lysine 4 trimethylation modifications that were lacking in wild-type Th2 cells, implying that Gfi-1 is critical for epigenetic regulation of Th17 and iTreg cell–related genes in Th2 cells. Enforced Gfi-1 expression inhibited IL-17 production and iTreg cell differentiation. Furthermore, a key inducer of both Th17 and iTreg cell differentiation, transforming growth factor β, repressed Gfi-1 expression, implying a reciprocal negative regulation of CD4 T cell fate determination. Chromatin immunoprecipitation showed direct binding of the Gfi-1–lysine-specific demethylase 1 repressive complex to the intergenic region of Il17a/Il17f loci and to intron 1 of Cd103. T cell–specific Gfi1 conditional knockout mice displayed a striking delay in the onset of experimental allergic encephalitis correlated with a dramatic increase of Foxp3+CD103+ CD4 T cells. Thus, Gfi-1 plays a critical role both in enhancing Th2 cell expansion and in repressing induction of Th17 and CD103+ iTreg cells.


2004 ◽  
Vol 199 (3) ◽  
pp. 423-428 ◽  
Author(s):  
Alla Skapenko ◽  
Jan Leipe ◽  
Uwe Niesner ◽  
Koen Devriendt ◽  
Rolf Beetz ◽  
...  

The delineation of the in vivo role of GATA-3 in human T cell differentiation is a critical step in the understanding of molecular mechanisms directing human immune responses. We examined T cell differentiation and T cell–mediated effector functions in individuals lacking one functional GATA-3 allele. CD4 T cells from GATA-3+/− individuals expressed significantly reduced levels of GATA-3, associated with markedly decreased T helper cell (Th)2 frequencies in vivo and in vitro. Moreover, Th2 cell–mediated effector functions, as assessed by serum levels of Th2-dependent immunoglobulins (Igs; IgG4, IgE), were dramatically decreased, whereas the Th1-dependent IgG1 was elevated compared with GATA-3+/+ controls. Concordant with these data, silencing of GATA-3 in GATA-3+/+ CD4 T cells with small interfering RNA significantly reduced Th2 cell differentiation. Moreover, GATA-3 mRNA levels increased under Th2-inducing conditions and decreased under Th1-inducing conditions. Taken together, the data strongly suggest that GATA-3 is an important transcription factor in regulating human Th2 cell differentiation in vivo.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 285-285
Author(s):  
Chun Yang ◽  
Jianhong Lin ◽  
Hongyan Liang ◽  
Ariel Kwart ◽  
Meng Jiang ◽  
...  

Abstract The polarization of naïve CD4+ T cells may initiate multiple reactions in immune system. The balance between Th1 and Th2 cells is critical for innate and acquired immune reactions. But the exact mechanism of its polarization is still unclear. IL-4 is specifically produced by Th2 cells, and regulates Th2 differentiation. Once IL-4 binds to IL-4 receptor (IL-4R), the Th2 polarization signal is activated by phosphorylation of STAT6 (recruited by IL-4Rα), its relocation to nucleus, activation of STAT6 downstream genes (gata3, il-4 and il-4rα etc) and consequent Th2 polarization. CD44 an important T cell activation and T helper cell differentiation gene participates in the regulation of Th1 and Th2 differentiation. Furthermore, CD44 variant isoforms produced by alternative RNA splicing, have different physiological and pathological functions including tumor metastasis, drug resistance and anti-apoptosis effect in tumor cells. Here we report hitherto unknown specific CD44 variant isoforms involved in T helper cell differentiation and functional regulator of CD4+ T cell polarization. We developed various PCR primer sets able to distinguish different CD44 isoforms in human and mouse Th2 cells. We found higher expression of CD44 variant 4 (CD44v4) and CD44v5 in both human and mouse Th2 cells compared with Th1 cells, indicating their role in Th2 cell differentiation. In order to investigate the role of CD44v4 and CD44v5 in Th2 cells polarization, we treated human naïve CD4+ T cells with CD44v4 or CD44v5 antibody separately for 3 days in polarizing condition. We observed that CD44v5 antibody treatment dramatically decreased the level of phospho-JAK1 and pSTAT6 compared to control cells treated with same amount of normal mouse IgG. At the same time, the expression of GATA3 detected by western blot and the secretion of IL-4 measured by ELISA decreased. Notably, the phosphorylation of STAT1 in Th1 cells was not inhibited by CD44v5 blocking. There is a significant decrease in GATA3 and IL4 expression with CD44v5 antibody but not in CD44v4 antibody treated group, which indicated that Th2 polarization was mainly influenced by CD44v5. In order to verify our finding, CD44v5 specific siRNA were used and we observed similar result in CD4+ T cells. Interestingly, we found that the degradation of IL-4Rα increased after treatment of Th2 cells with CD44v5 antibody compared with control group. Using confocal microscopy of single cell, we observed that CD44v5 co-localized with IL-4Rα. Importantly, CD44v5 antibody treatment could interrupt the CD44v5 and IL-4Rα interaction and also the co-localization of T cell receptor (TCR). On Th1 cells, we didn't find the co-localization between IFNgR and CD44v5. The IFN-γ secretion in Th1 cells were not influenced by either CD44v5 blocking or CD44v5-deficient CD4+ T cells indicating that CD44v5 only influenced the differentiation of Th2 cell, but not Th1 cells. In conclusion, CD44v5 plays an important role in naive T cell differentiates into Th2 cells. We hypothesis that CD44v5 can bind to IL-4Rα through CD44v5 variant domain and stabilize the IL-4Rα, blocking CD44v5 induced IL-4R degradation and reduce the Th2 cell differentiation. CD44v5 antibody treatment inhibiting Th2 differentiation without affecting Th1 development provides a potential novel immuno-therapy target. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 97 (8) ◽  
pp. 2358-2365 ◽  
Author(s):  
Shin-ichiro Kagami ◽  
Hiroshi Nakajima ◽  
Akira Suto ◽  
Koichi Hirose ◽  
Kotaro Suzuki ◽  
...  

Abstract We have previously shown that CD4+ T cell–mediated allergic inflammation is diminished in signal transducer and activator of transcription (Stat)5a-deficient (Stat5a−/−) mice. To determine whether Stat5a regulates T helper cell differentiation, we studied T helper (Th)1 and Th2 cell differentiation of Stat5a−/−CD4+ T cells at single-cell levels. First, Th2 cell differentiation from antigen-stimulated splenocytes was significantly decreased in Stat5a−/− mice as compared with that in wild-type mice. Further, Th2 cell differentiation was also impaired in Stat5a−/− mice even when purified CD4+ T cells were stimulated with anti-CD3 plus anti-CD28 antibodies in the presence of interleukin-4. Moreover, the retrovirus-mediated gene expression of Stat5a in Stat5a−/−CD4+ T cells restored the Th2 cell differentiation at the similar levels to that in wild-type CD4+ T cells. In addition, interleukin-4 normally phosphorylated Stat6 in CD4+ T cells from Stat5a−/− mice. Second, the development of CD4+CD25+ immunoregulatory T cells was impaired in Stat5a−/− mice, as indicated by a significant decrease in the number of CD4+CD25+ T cells in Stat5a−/− mice. Furthermore, the depletion of CD4+CD25+ T cells from wild-type splenocytes significantly decreased Th2 cell differentiation but increased Th1 cell differentiation, whereas the depletion of CD4+CD25+ T cells from Stat5a−/−splenocytes had no significant effect on the Th1 and Th2 cell differentiation. Together, these results indicate that the intrinsic expression of Stat5a in CD4+ T cells is required for Th2 cell differentiation and that Stat5a is involved in the development of CD4+CD25+ immunoregulatory T cells that modulate T helper cell differentiation toward Th2 cells.


Sign in / Sign up

Export Citation Format

Share Document