scholarly journals Quasispectra of solvable Lie algebra homomorphisms into Banach algebras

2006 ◽  
Vol 174 (1) ◽  
pp. 13-27 ◽  
Author(s):  
Anar Dosiev
Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 907 ◽  
Author(s):  
Oğul Esen ◽  
Miroslav Grmela ◽  
Hasan Gümral ◽  
Michal Pavelka

Geometrical and algebraic aspects of the Hamiltonian realizations of the Euler’s fluid and the Vlasov’s plasma are investigated. A purely geometric pathway (involving complete lifts and vertical representatives) is proposed, which establishes a link from particle motion to evolution of the field variables. This pathway is free from Poisson brackets and Hamiltonian functionals. Momentum realizations (sections on T * T * Q ) of (both compressible and incompressible) Euler’s fluid and Vlasov’s plasma are derived. Poisson mappings relating the momentum realizations with the usual field equations are constructed as duals of injective Lie algebra homomorphisms. The geometric pathway is then used to construct the evolution equations for 10-moments kinetic theory. This way the entire Grad hierarchy (including entropic fields) can be constructed in a purely geometric way. This geometric way is an alternative to the usual Hamiltonian approach to mechanics based on Poisson brackets.


2003 ◽  
Vol 18 (09) ◽  
pp. 629-641 ◽  
Author(s):  
H. L. CARRION ◽  
M. ROJAS ◽  
F. TOPPAN

The symmetry algebra of a QFT in the presence of an external EM background (named "residual symmetry") is investigated within a Lie-algebraic, model-independent scheme. Some results previously encountered in the literature are extended here. In particular we compute the symmetry algebra for a constant EM background in D = 3 and D = 4 dimensions. In D = 3 dimensions the residual symmetry algebra, for generic values of the constant EM background, is isomorphic to [Formula: see text], with [Formula: see text] the centrally extended two-dimensional Poincaré algebra. In D = 4 dimension the generic residual symmetry algebra is given by a seven-dimensional solvable Lie algebra which is explicitly computed. Residual symmetry algebras are also computed for specific non-constant EM backgrounds and in the supersymmetric case for a constant EM background. The supersymmetry generators are given by the "square roots" of the deformed translations.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Seong Sik Kim ◽  
Ga Ya Kim ◽  
Soo Hwan Kim

We investigate new generalized Hyers-Ulam stability results for -derivations and Lie -algebra homomorphisms on Lie -algebras associated with the additive functional equation:


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jonas Deré ◽  
Marcos Origlia

Abstract Every simply connected and connected solvable Lie group 𝐺 admits a simply transitive action on a nilpotent Lie group 𝐻 via affine transformations. Although the existence is guaranteed, not much is known about which Lie groups 𝐺 can act simply transitively on which Lie groups 𝐻. So far, the focus was mainly on the case where 𝐺 is also nilpotent, leading to a characterization depending only on the corresponding Lie algebras and related to the notion of post-Lie algebra structures. This paper studies two different aspects of this problem. First, we give a method to check whether a given action ρ : G → Aff ⁡ ( H ) \rho\colon G\to\operatorname{Aff}(H) is simply transitive by looking only at the induced morphism φ : g → aff ⁡ ( h ) \varphi\colon\mathfrak{g}\to\operatorname{aff}(\mathfrak{h}) between the corresponding Lie algebras. Secondly, we show how to check whether a given solvable Lie group 𝐺 acts simply transitively on a given nilpotent Lie group 𝐻, again by studying properties of the corresponding Lie algebras. The main tool for both methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull, which we also define on the level of Lie algebras. As an application, we give a full description of the possibilities for simply transitive actions up to dimension 4.


2007 ◽  
Vol 37 (4) ◽  
pp. 1315-1326 ◽  
Author(s):  
Ahmet Temizyürek ◽  
Naime Ekici

Sign in / Sign up

Export Citation Format

Share Document