scholarly journals NEW INTERPRETATION OF THE ATOMIC SPECTRA OF THE HYDROGEN ATOM: A MIXED MECHANISM OF CLASSICAL LC CIRCUITS AND QUANTUM WAVE-PARTICLE DUALITY

Author(s):  
Héctor Torres-Silva
2010 ◽  
Vol 43 (2) ◽  
pp. 245-275 ◽  
Author(s):  
JAUME NAVARRO

AbstractIn 1927, George Paget Thomson, professor at the University of Aberdeen, obtained photographs that he interpreted as evidence for electron diffraction. These photographs were in total agreement with de Broglie's principle of wave–particle duality, a basic tenet of the new quantum wave mechanics. His experiments were an initially unforeseen spin-off from a project he had started in Cambridge with his father, Joseph John Thomson, on the study of positive rays. This paper addresses the scientific relationship between the Thomsons, father and son, as well as the influence that the institutional milieu of Cambridge had on the early work of the latter. Both Thomsons were trained in the pedagogical tradition of classical physics in the Cambridge Mathematical Tripos, and this certainly influenced their understanding of quantum physics and early quantum mechanics. In this paper, I analyse the responses of both father and son to the photographs of electron diffraction: a confirmation of the existence of the ether in the former, and a partial embrace of some ideas of the new quantum mechanics in the latter.


Author(s):  
Ying-Qiu Gu

The description of the microscopic world in quantum mechanics is very different from that in classical physics, and there are some points of view that are contrary to intuition and logic. The first is the loss of reality, the behavior of micro particles shows randomness and hopping. The second is the loss of certainty, the conjugate physical variables of a system cannot be determined synchronously, they satisfy the Heisenberg uncertainty principle. The third is the non-local correlation. The measurement of one particle in the quantum entanglement pair will change the state of the other entangled particle simultaneously. In this paper, some concepts related to quantum entanglement, such as EPR correlation, quantum entanglement correlation function, Bell's inequality and so on, are analyzed in detail. Analysis shows that the mystery and confusion in quantum theory may be caused by the logical problems in its basic framework. Bell's inequality is only a mathematical theorem, but its physical meaning is actually unclear. The Bell state of quantum entangled pair may not satisfy the dynamic equation of quantum theory, so it cannot describe the true state of microscopic particles. In this paper, the correct correlation functions of spin entanglement pair and photonic entanglement pair are strictly derived according to normal logic. Quantum theory is a more fundamental theory than classical mechanics, and they are not parallel relation in logic. However, there are still some unreasonable contents in the framework of quantum theory, which need to be improved. In order to disclose the real relationship between quantum theory and classical mechanics, we propose some experiments which show the wave-particle duality simultaneously and provide intuitionistic teaching materials for the new interpretation of quantum theory.


Author(s):  
Yasunori Nomura ◽  
Bill Poirier ◽  
John Terning

2015 ◽  
Vol 77 (23) ◽  
Author(s):  
Saiman Saiman ◽  
Rinto Agustino ◽  
Hamdani Hamdani

Klein-Gordon field is often used to study the dynamics of elementary particles. The Klein–Gordon equation was first considered as a quantum wave equation by Schrödinger in his search for an equation describing de Broglie waves. The equation was found in his notebooks from late 1925, and he appears to have prepared a manuscript applying it to the hydrogen atom. Yet, because it fails to take into account the electron's spin, the equation failed to predict the fine structure of the hydrogen atom, and overestimated the overall magnitude of the splitting pattern energy. This paper will describe in detail using the Direct Method of Calculus Variation as an alternative to solve the Klien-Gordon field equations. The Direct Method simplified the calculation because the variables are calculated and expressed in functional form of energy. The result of the calculation of Klien-Gordon Feld provided the existence of the minimizer, i.e.  with  and . Explicit form of the minimizer was calculated by the Ritz method through rows of convergent density


2019 ◽  
pp. 91-174
Author(s):  
P.J.E. Peebles

This chapter develops the wave mechanics formalism. The emphasis here is on symmetries and conservation laws: parity, linear and angular momentum, and the electromagnetic interaction. The only specific physical application is the completion of the study of an isolated hydrogen atom, with some discussion of the motion of a particle in a magnetic field. The chapter also outlines the general assumptions of quantum wave mechanics, which may be summarized as follows: the state of a physical system is represented by a wave function and each measurable attribute of the system is represented by a linear self-adjoint operator in the space of functions. To apply these general assumptions to a given physical system, one must give a specific prescription for the observables and their algebra, and one must adopt a definite form for the Hamiltonians as a function of the observables.


Author(s):  
Christian Brand ◽  
Sandra Eibenberger ◽  
Ugur Sezer ◽  
Markus Arndt

The chapter discusses advances in matter-wave optics with complex molecules, generalizing Young’s double slit to high masses. The quantum wave-particle duality is visualized by monitoring the arrival patterns of molecules diffracted at nanomechanical masks. Each molecule displays particle behavior when it is localized on the detector; however, the overall interference pattern requires their delocalization in free flight. Internal particle properties influence the de Broglie waves in the presence of surfaces or fields—even in interaction with atomically thin gratings. To probe the quantum nature of high-mass molecules, universal beam splitters are combined in a multi-grating interferometer to observe high-contrast matter-wave fringes even for 500 K hot molecules, containing 810 atoms with a mass of 10 000 amu. The high sensitivity of the nanoscale interference fringes to deflection in external fields enables non-invasive measurements of molecular properties. The chapter concludes by discussing research on beam techniques that extend molecular quantum optics to large biomolecules.


2021 ◽  
Vol 126 (24) ◽  
Author(s):  
Bin Zhang ◽  
Du Ran ◽  
Reuven Ianconescu ◽  
Aharon Friedman ◽  
Jacob Scheuer ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 1
Author(s):  
Gregory L. Light

In the framework of General Relativity we explain the creation of all particles, ordinary and anti, in two chiral directions, with multiple generations, as well as electromagnetism and the strong nuclear force. Quantum mechanics is well-known to have its foundational problems revolving around the wave-particle duality, which actually has an exact solution, viz., a diagonal spacetime manifold that admits any particle of energy coupled with its wave of energy co-existing at the same spacetime (t + it, x + iy, y + iz, z + ix). I.e., a photon can travel along x = ct with its associated electromagnetic wave spinning from y to z in circular motion as (y = cos t, z = sin t) ≡ eit. The construct of diagonal manifold, seemingly artificial, is fundamental in differential topology as it leads to the Euler characteristic. That Nature is inherently of duality cannot have a more evident example than that of the complex number x + iy, where 1 implies a linear motion in R and i = eπ2 i implies a circular motion along S 1. That the quantum wave itself possesses energy can be argued simply as: wave = probability = frequency = energy by Planck’s formula. By assigning energy entirely to particle, quantum mechanics has missed an entire copy of the Universe (the wave universe treated as the quantum vacuum).


2020 ◽  
Vol 2 (7(76)) ◽  
pp. 64-68
Author(s):  
H. Nigmatov ◽  
B.H. Tursunbaev ◽  
T.B. Tursunbaev

Sign in / Sign up

Export Citation Format

Share Document