de broglie waves
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 19)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 104 (24) ◽  
Author(s):  
Wan-yue Xiao ◽  
Cheng-ping Huang
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Byoung S. Ham

A Sagnac interferometer has been a powerful tool for gyroscope, spectroscopy, and navigation based on the Sagnac effects between counterpropagating twin fields in a closed loop, whose difference phase is caused by Einstein’s special relativity. Here, a nonclassical version of a Sagnac interferometer is presented using completely different physics of coherence de Broglie waves (CBW) in a cavity, where CBW is a nonclassical feature overcoming the standard quantum limit governed by classical physics.


2021 ◽  
Author(s):  
S. Kim ◽  
Byoung S. Ham

Abstract Recently, a new interpretation of quantum mechanics has been developed for the wave nature of a photon, where determinacy in quantum correlations becomes an inherent property without the violation of quantum mechanics. Here, we experimentally demonstrate a direct proof of the wave natures of quantum correlation for the so-called coherence de Broglie waves (CBWs) using sub-Poisson distributed coherent photon pairs obtained from an attenuated laser. The observed experimental data coincides with the analytic solutions and the numerical calculations. Thus, the CBWs pave a road toward deterministic and macroscopic quantum technologies for such as quantum metrology, quantum sensing, and even quantum communications, that are otherwise heavily limited due to the microscopic non-determinacy of the particle nature-based quantum mechanics.


2021 ◽  
Author(s):  
Ashima Bajaj ◽  
Rishu Khurana ◽  
Md. Ehesan Ali

<div>The development of stimuli responsive systems that can switch between two distinct spin states under the application of an external stimuli has always remained an illusory challenge. Here, we report a stimuli-based spin filter by utilizing photo-responsive endoperoxide (EPO) based single molecule device. The photo-irradiation on EPO triggers the homolytic cleavage of the peroxide O-O bond generating diradical intermediate centered on two O-atoms which facilitates high spin filtering efficiency when placed between gold electrodes. The broken conjugated scenario due to peroxide bridge of EPO hinders the propagation of de-Broglie waves across the molecular skeleton. While the diradical intermediate of EPO yields high conductance for one of the spin configuration. The transmission characteristics of various photoproducts along the photochemical reaction pathway of EPO are also investigated using density functional theory in combination with non-equilibrium Green’s function (NEGF-DFT) technique. We demonstrate the key role played by Quantum Interference (QI) effects in dramatic modulation of conductance arising due to different degree of conjugation along the reaction pathway of EPO.</div><div><br></div>


2021 ◽  
Author(s):  
Ashima Bajaj ◽  
Rishu Khurana ◽  
Md. Ehesan Ali

<div>The development of stimuli responsive systems that can switch between two distinct spin states under the application of an external stimuli has always remained an illusory challenge. Here, we report a stimuli-based spin filter by utilizing photo-responsive endoperoxide (EPO) based single molecule device. The photo-irradiation on EPO triggers the homolytic cleavage of the peroxide O-O bond generating diradical intermediate centered on two O-atoms which facilitates high spin filtering efficiency when placed between gold electrodes. The broken conjugated scenario due to peroxide bridge of EPO hinders the propagation of de-Broglie waves across the molecular skeleton. While the diradical intermediate of EPO yields high conductance for one of the spin configuration. The transmission characteristics of various photoproducts along the photochemical reaction pathway of EPO are also investigated using density functional theory in combination with non-equilibrium Green’s function (NEGF-DFT) technique. We demonstrate the key role played by Quantum Interference (QI) effects in dramatic modulation of conductance arising due to different degree of conjugation along the reaction pathway of EPO.</div><div><br></div>


2021 ◽  
Vol 12 (2) ◽  
pp. 195-203
Author(s):  
A. S. Voronov ◽  
B. S. Rivkin
Keyword(s):  

2021 ◽  
Vol 29 (2) ◽  
pp. 126-139
Author(s):  
A.S. Voronov ◽  
◽  
B.S. Rivkin ◽  
◽  

The paper addresses the operating principles of a gyroscopic de-vice of a new type: a gyroscope on de Broglie waves. The sensitive element of such a gyroscope is an atomic interferometer, whose main components are described and the technical challenges of its development are discussed. The target audience of this paper is the readers who do not have a profound knowledge of the quantum physics.


2020 ◽  
Vol 25 (10) ◽  
pp. 1763-1777
Author(s):  
James M Hill

The existence of the so-called ‘dark’ issues of mechanics implies that our present accounting for mass and energy is incorrect in terms of applicability on a cosmological scale, and the question arises as to where the difficulty might lie. The phenomenon of quantum entanglement indicates that systems of particles exist that individually display certain characteristics, while collectively the same characteristic is absent simply because it has cancelled out between individual particles. It may therefore be necessary to develop theoretical frameworks in which long-held conservation beliefs do not necessarily always apply. The present paper summarises the formulation described in earlier papers (Hill, JM. On the formal origin of dark energy. Z Angew Math Phys 2018; 69:133-145; Hill, JM. Some further comments on special relativity and dark energy. Z Angew Math Phys 2019; 70: 5–14; Hill, JM. Special relativity, de Broglie waves, dark energy and quantum mechanics. Z Angew Math Phys 2019; 70: 131–153.), which provides a framework that allows exceptions to the law that matter cannot be created or destroyed. In these papers, it is proposed that dark energy arises from conventional mechanical theory, neglecting the work done in the direction of time and consequently neglecting the de Broglie wave energy [Formula: see text]. These papers develop expressions for the de Broglie wave energy [Formula: see text] by making a distinction between particle energy [Formula: see text] and the total work done by the particle [Formula: see text], that which accumulates from both a spatial physical force [Formula: see text] and a force [Formula: see text] in the direction of time. In any experiment, either particles or de Broglie waves are reported, so that only one of [Formula: see text] or [Formula: see text] is physically measured, and particles appear for [Formula: see text] and de Broglie waves occur for [Formula: see text], but in either event both a measurable and an immeasurable energy exists. Conventional quantum mechanics operates under circumstances such that [Formula: see text] vanishes and [Formula: see text] becomes purely imaginary. If both [Formula: see text] and [Formula: see text] are generated as the gradient of a potential, the total particle energy is necessarily conserved in the conventional manner.


Author(s):  
M. Suhail Zubairy

In this chapter, the Schrödinger equation is “derived” for particles that can be described by de Broglie waves. The Schrödinger equation is very different from the corresponding equation of motion in classical mechanics. In order to illustrate the fundamental differences between the two theories, one of the simplest problems of particle dynamics is solved in both Newtonian and quantum mechanics. This simple example also helps to show that quantum mechanics is the fundamental theory and classical mechanics is an approximation, a remarkably good approximation, when considering macroscopic objects. The solution of the Schrödinger equation is presented for a particle inside a box and the quantization condition is derived. The amazing possibility of quantum tunneling when a particle is incident on a barrier of height larger than the energy of the incident particle is also discussed. Finally the three-dimensional Schrödinger equation is solved for the hydrogen atom.


Sign in / Sign up

Export Citation Format

Share Document