scholarly journals Quantum Mechanics by General Relativity

2019 ◽  
Vol 11 (2) ◽  
pp. 1
Author(s):  
Gregory L. Light

In the framework of General Relativity we explain the creation of all particles, ordinary and anti, in two chiral directions, with multiple generations, as well as electromagnetism and the strong nuclear force. Quantum mechanics is well-known to have its foundational problems revolving around the wave-particle duality, which actually has an exact solution, viz., a diagonal spacetime manifold that admits any particle of energy coupled with its wave of energy co-existing at the same spacetime (t + it, x + iy, y + iz, z + ix). I.e., a photon can travel along x = ct with its associated electromagnetic wave spinning from y to z in circular motion as (y = cos t, z = sin t) ≡ eit. The construct of diagonal manifold, seemingly artificial, is fundamental in differential topology as it leads to the Euler characteristic. That Nature is inherently of duality cannot have a more evident example than that of the complex number x + iy, where 1 implies a linear motion in R and i = eπ2 i implies a circular motion along S 1. That the quantum wave itself possesses energy can be argued simply as: wave = probability = frequency = energy by Planck’s formula. By assigning energy entirely to particle, quantum mechanics has missed an entire copy of the Universe (the wave universe treated as the quantum vacuum).

2020 ◽  
Author(s):  
Vasil Dinev Penchev

Cyclic mechanic is intended as a suitable generalization both of quantum mechanics and general relativity apt to unify them. It is founded on a few principles, which can be enumerated approximately as follows:1. Actual infinity or the universe can be considered as a physical and experimentally verifiable entity. It allows of mechanical motion to exist.2. A new law of conservation has to be involved to generalize and comprise the separate laws of conservation of classical and relativistic mechanics, and especially that of conservation of energy: This is the conservation of action or information.3. Time is not a uniformly flowing time in general. It can have some speed, acceleration, more than one dimension, to be discrete.4. The following principle of cyclicity: The universe returns in any point of it. The return can be only kinematic, i.e. per a unit of energy (or mass), and thermodynamic, i.e. considering the universe as a thermodynamic whole.5. The kinematic return, which is per a unit of energy (or mass), is the counterpart of conservation of energy, which can be interpreted as the particular case of conservation of action “per a unit of time”. The kinematic return per a unit of energy (or mass) can be interpreted in turn as another particular law of conservation in the framework of conservation of action (or information), namely conservation of wave period (or time). These two counterpart laws of conservation correspond exactly to the particle “half” and to the wave “half” of wave-particle duality.6. The principle of quantum invariance is introduced. It means that all physical laws have to be invariant to discrete and continuous (smooth) morphisms (motions) or mathematically, to the axiom of choice.The list is not intended to be exhausted or disjunctive, but only to give an introductory idea.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A generalized and unifying viewpoint to both general relativity and quantum mechanics and information is investigated. It may be described as a generaliztion of the concept of reference frame from mechanics to thermodynamics, or from a reference frame linked to an element of a system, and thus, within it, to another reference frame linked to the whole of the system or to any of other similar systems, and thus, out of it. Furthermore, the former is the viewpoint of general relativity, the latter is that of quantum mechanics and information.Ciclicity in the manner of Nicolas Cusanus (Nicolas of Cusa) is complemented as a fundamental and definitive property of any totality, e.g. physically, that of the universe. It has to contain its externality within it somehow being namely the totality. This implies a seemingly paradoxical (in fact, only to common sense rather logically and mathematically) viewpoint for the universe to be repesented within it as each one quant of action according to the fundamental Planck constant.That approach implies the unification of gravity and entanglement correspondiing to the former or latter class of reference frames. An invariance, more general than Einstein's general covariance is to be involved as to both classes of reference frames unifying them. Its essence is the unification of the discrete and cotnitinuous (smooth). That idea underlies implicitly quantum mechanics for Bohr's principle that it study the system of quantum microscopic entities and the macroscopic apparatus desribed uniformly by the smmoth equations of classical physics.e


2010 ◽  
Vol 43 (2) ◽  
pp. 245-275 ◽  
Author(s):  
JAUME NAVARRO

AbstractIn 1927, George Paget Thomson, professor at the University of Aberdeen, obtained photographs that he interpreted as evidence for electron diffraction. These photographs were in total agreement with de Broglie's principle of wave–particle duality, a basic tenet of the new quantum wave mechanics. His experiments were an initially unforeseen spin-off from a project he had started in Cambridge with his father, Joseph John Thomson, on the study of positive rays. This paper addresses the scientific relationship between the Thomsons, father and son, as well as the influence that the institutional milieu of Cambridge had on the early work of the latter. Both Thomsons were trained in the pedagogical tradition of classical physics in the Cambridge Mathematical Tripos, and this certainly influenced their understanding of quantum physics and early quantum mechanics. In this paper, I analyse the responses of both father and son to the photographs of electron diffraction: a confirmation of the existence of the ether in the former, and a partial embrace of some ideas of the new quantum mechanics in the latter.


2001 ◽  
Vol 16 (17) ◽  
pp. 2965-2973 ◽  
Author(s):  
MAKOTO INABA

There is an indeterminable part from only the mass distribution in the general relativity. The part is regarded as a fluctuation from the Robertson–Walker geometry. An ensemble is given by a coarse graining of the fluctuation. The averaged least-action principle with respect to the ensemble yields a random motion of a particle in the universe. The random motion is equivalent to the traditional quantum mechanics. There is an additional potential proportional to scalar curvature in the present theory. The potential may be a representation of Mach's principle.


2013 ◽  
Vol 26 (3) ◽  
pp. 430-437
Author(s):  
Sylvain Battisti

Elementary particles are the common capital of any being in the universe. However, a being is characterized by its behavior as well as its capital and the principle of least action shows the common behavior of partners that transfer energy. However, the concept of action does not apply to all transfers; what is the action when two men transfer words? Here we show that the “principle of greatest freedom” reveals the common behavior of any partner during nondestructive relationship that is to maximize the number of its accessible states, i.e., its freedom. It gives a common interpretation to quantum mechanics, to wave-particle duality and to relativity. It defines the coherent relationship, which explains why objects behave consistently according to laws and why they construct compound beings that evolve.


Author(s):  
Miguel Navascués ◽  
Harald Wunderlich

One of the most important problems in physics is to reconcile quantum mechanics with general relativity, and some authors have suggested that this may be realized at the expense of having to drop the quantum formalism in favour of a more general theory. Here, we propose a mechanism to make general claims on the microscopic structure of the Universe by postulating that any post-quantum theory should recover classical physics in the macroscopic limit. We use this mechanism to bound the strength of correlations between distant observers in any physical theory. Although several quantum limits are recovered, such as the set of two-point quantum correlators, our results suggest that there exist plausible microscopic theories of Nature that predict correlations impossible to reproduce in any quantum mechanical system.


2021 ◽  
pp. 161-177
Author(s):  
Steven L. Goldman

Ontology is integral to the two most fundamental scientific theories of the twentieth century: quantum theory and the special and general theories of relativity. Issues that drove the development of quantum theory include the reality of quanta, the simultaneous wave- and particle-like nature of matter and energy, determinism, probability and randomness, Schrodinger’s wave equation, and Heisenberg’s uncertainty principle. So did the reality of the predictions about space, time, matter, energy, and the universe itself that were deduced from the special and general theories of relativity. Dirac’s prediction of antimatter based solely on the mathematics of his theory of the electron and Pauli’s prediction of the neutrino based on his belief in quantum mechanics are cases in point. Ontological interpretations of the uncertainty principle, of quantum vacuum energy fields, and of Schrodinger’s probability waves in the form of multiple universe theories further illustrate this point.


Author(s):  
Syed Abbas ◽  
Nasim Akhtar ◽  
Danish Alam

At present there is a renewed interest in theories of ”modified” gravity. Here, under a more drastic modification enforced by Galilei group, we obtain a completely new gravitational structure, and which exists in addition to the already available general relativity of today. Correlated with this, we show that in addition, there is a new ”modified” quantum mechanics, in as much as it exists as an independent and new ”pure” non-relativistic quantum me- chanics, and which has no relativistic counterpart. This is in addition to the present quantum mechanics, where the relativistic and non-relativistic structures are counterparts of each other. The above holds, firstly due to the correlation between Galilei group and quantum mechanics. These math- ematical conclusions are consolidated by the fact that there exists a physical Majorana interaction between each neutron- proton pairs in nuclei. Galilei invariance of Majorana exchange in Majorana interaction, shows that the mass here is of pure gravitational nature, and which is immune to the other three forces. This makes an amazing connection between the gravitational force and the quantum mechanics. This pure gravitational mass would man- ifest itself as dark matter of the universe. It is our new modified gravity that generates the dark matter.


2019 ◽  
Vol 66 ◽  
pp. 267-308
Author(s):  
Bernard J. Carr ◽  
George F. R. Ellis ◽  
Gary W. Gibbons ◽  
James B. Hartle ◽  
Thomas Hertog ◽  
...  

Stephen Hawking's contributions to the understanding of gravity, black holes and cosmology were truly immense. They began with the singularity theorems in the 1960s followed by his discovery that black holes have an entropy and consequently a finite temperature. Black holes were predicted to emit thermal radiation, what is now called Hawking radiation. He pioneered the study of primordial black holes and their potential role in cosmology. His organization of and contributions to the Nuffield Workshop in 1982 consolidated the picture that the large-scale structure of the universe originated as quantum fluctuations during the inflationary era. Work on the interplay between quantum mechanics and general relativity resulted in his formulation of the concept of the wavefunction of the universe. The tension between quantum mechanics and general relativity led to his struggles with the information paradox concerning deep connections between these fundamental areas of physics. These achievements were all accomplished following the diagnosis during the early years of Stephen's studies as a post-graduate student in Cambridge that he had incurable motor neuron disease—he was given two years to live. Against all the odds, he lived a further 55 years. The distinction of his work led to many honours and he became a major public figure, promoting with passion the needs of disabled people. His popular best-selling book, A brief history of time , made cosmology and his own work known to the general public world-wide. He became an icon for science and an inspiration to all.


Author(s):  
Ulf Leonhardt ◽  
Thomas G Philbin

The event horizon is predicted to generate particles from the quantum vacuum, an effect that bridges three areas of physics—general relativity, quantum mechanics and thermodynamics. The quantum radiation of real black holes is too feeble to be detectable, but black-hole analogues may probe several aspects of quantum black holes. In this paper, we explain in simple terms some of the motivations behind the study of artificial black holes.


Sign in / Sign up

Export Citation Format

Share Document