True Random Source from Integratable Chaotic Circuits

Author(s):  
Ned Corron ◽  
Marko Milosavljevic ◽  
Jon Blakely

In this talk, we describe a chaotic electronic circuit designed to realize a physical random number generator that is easily integrated. The small footprint of the circuit enables massive parallel realization to achieve high-speed, true-random bit sequences. The analog circuit can be fully characterized, and conjugacy to a symbolic shift proves the presence of chaos. The symbolic representation also provides a rigorous means to extract the maximum entropy from the chaotic device. Analysis of the circuit dynamics reveals critical tunings that yield special Markov properties, which are essential for removing correlations in the random sequences. Practically important is the presence of a sensitive circuit statistic that enables efficient feedback control to the Markov tuning. Numerical simulation and breadboard experimental results demonstrate the effectiveness of the proposed physical random number generator device.

2021 ◽  
pp. 2100062
Author(s):  
Kyung Seok Woo ◽  
Jaehyun Kim ◽  
Janguk Han ◽  
Jin Myung Choi ◽  
Woohyun Kim ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiancheng Liu ◽  
Karthikeyan Rajagopal ◽  
Tengfei Lei ◽  
Sezgin Kaçar ◽  
Burak Arıcıoğlu ◽  
...  

When revising the polarity and amplitude information in the feedback, a unique hypogenetic jerk system was obtained which has two controllers to switch the equilibria between stable and unstable. After providing some basic dynamical analysis, an electronic circuit was implemented, and the phase trajectory in the oscilloscope agrees with the numerical simulation. Further exploration shows that this unique chaotic system has superior performance as a random number generator or in voice encryption application.


Author(s):  
Christian Gabriel ◽  
Christoffer Wittmann ◽  
Bastian Hacker ◽  
Wolfgang Mauerer ◽  
Elanor Huntington ◽  
...  

1976 ◽  
Vol 8 (4) ◽  
pp. 405-405 ◽  
Author(s):  
Donald R. Miklich ◽  
David J. Austin

Sign in / Sign up

Export Citation Format

Share Document