scholarly journals Hard times for catadromous fish: the case of the European eel (Anguilla anguilla, L. 1758)

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Cinzia Podda ◽  
Andrea Sabatini ◽  
Francesco Palmas ◽  
Antonio Pusceddu

Catadromous fish species are very important organisms for their ecological, economical, and cultural value. For its complex life species catadromous fish result in worldwide decline since the beginning of the 20th century. Among the most iconic catadromous species, the European eel Anguilla anguilla L. 1758 has aroused considerable interest since very ancient times. Because, to date, many aspects of their life cycle remain relatively unknown, to implement our knowledge about the main natural and anthropogenic threats to its survivorship and identify possible solutions to preserve it, in this narrative review, we present the state of the knowledge about the life cycle, habitat occupancy, recruitment, and migration patterns of the European eel and about the major threats most likely have contributed to the decline of eels’ populations.

2005 ◽  
Vol 79 (2) ◽  
pp. 169-176 ◽  
Author(s):  
J.A. Shears ◽  
C.R. Kennedy

AbstractPrevious studies on the life history of the nematode eel specialist Paraquimperia tenerrima (Nematoda: Quimperiidae) have failed to determine whether an intermediate host is required in the life cycle. In the laboratory, eggs failed to hatch below 10°C, hatching occurring only at temperatures between 11 and 30°C. Survival of the free-living second stage larvae (L2) was also temperature dependent, with maximal survival between 10 and 20°C. Total survival of the free-living stages (eggs and L2) is unlikely to exceed a month at normal summer water temperatures, confirming that parasite could not survive the 6 month gap between shedding of eggs in spring and infection of eels in early winter outside of a host. Eels could not be infected directly with L2, nor could a range of common freshwater invertebrate species. Third stage larvae (L3) resembling P. tenerrima were found frequently and abundantly in the swimbladder of minnows Phoxinus phoxinus from several localities throughout the year and were able to survive in this host in the laboratory for at least 6 months. Third stage larvae identical to these larvae were recovered from minnows experimentally fed L2 of P. tenerrima, and eels infected experimentally with naturally and experimentally infected minnows were found to harbour fourth stage larvae (L4) and juvenile P. tenerrima in their intestines. Finally, the whole life cycle from eggs to adult was completed in the laboratory, confirming that minnows are an obligate intermediate host for P. tenerrima.


Parasitology ◽  
2019 ◽  
Vol 146 (12) ◽  
pp. 1555-1563 ◽  
Author(s):  
S. Rocha ◽  
Â. Alves ◽  
C. Antunes ◽  
C. Azevedo ◽  
G. Casal

AbstractAn aurantiactinomyxon type is described from the marine naidid Tubificoides pseudogaster (Dahl, 1960), collected from the lower estuary of a Northern Portuguese River. This type constitutes the first of its collective group to be reported from Portugal, and only the fourth described from a marine oligochaete worldwide. Extensive morphological comparisons of new aurantiactinomyxon isolates to all known types without available molecular data are proposed to be unnecessary, given the artificiality of the usage of morphological criteria for actinosporean differentiation and the apparent strict host specificity of the group. Recognition of naidid oligochaetes as the hosts of choice for marine types of aurantiactinomyxon and other collective groups, suggests that the family Naididae played a preponderant role in the myxosporean colonization of estuarine communities. Molecular analyses of the type in study further infer its involvement in the life cycle of Paramyxidium giardi (Cépède, 1906) Freeman and Kristmundsson, 2018, a species that infects the kidney of European eel Anguilla anguilla (Linnaeus, 1758) and that has been reported globally, including from Portuguese waters. The low intraspecific difference registered in relation to Icelandic isolates of P. giardi (0.6%) is hypothesized to result from the emergence of genotypically different subspecies due to geographic isolation.


2010 ◽  
Vol 277 (1700) ◽  
pp. 3593-3599 ◽  
Author(s):  
Peter Munk ◽  
Michael M. Hansen ◽  
Gregory E. Maes ◽  
Torkel G. Nielsen ◽  
Martin Castonguay ◽  
...  

Anguillid freshwater eels show remarkable life histories. In the Atlantic, the European eel ( Anguilla anguilla ) and American eel ( Anguilla rostrata ) undertake extensive migrations to spawn in the oceanic Sargasso Sea, and subsequently the offspring drift to foraging areas in Europe and North America, first as leaf-like leptocephali larvae that later metamorphose into glass eels. Since recruitment of European and American glass eels has declined drastically during past decades, there is a strong demand for further understanding of the early, oceanic phase of their life cycle. Consequently, during a field expedition to the eel spawning sites in the Sargasso Sea, we carried out a wide range of dedicated bio-physical studies across areas of eel larval distribution. Our findings suggest a key role of oceanic frontal processes, retaining eel larvae within a zone of enhanced feeding conditions and steering their drift. The majority of the more westerly distributed American eel larvae are likely to follow a westerly/northerly drift route entrained in the Antilles/Florida Currents. European eel larvae are generally believed to initially follow the same route, but their more easterly distribution close to the eastward flowing Subtropical Counter Current indicates that these larvae could follow a shorter, eastward route towards the Azores and Europe. The findings emphasize the significance of oceanic physical–biological linkages in the life-cycle completion of Atlantic eels.


2006 ◽  
Vol 63 (1) ◽  
pp. 90-106 ◽  
Author(s):  
A James Kettle ◽  
Keith Haines

A Lagrangian model is presented of the current-carried migration of the leptocephali (larvae) of the European eel (Anguilla anguilla) across the North Atlantic Ocean from the spawning area in the Sargasso Sea to the adult range in Europe and North Africa. The success of larvae in crossing the Atlantic Ocean and reaching particular latitude bins on the eastern side depended strongly on starting location in the Sargasso Sea and migration depth. In the model domain, silver eel spawners can develop strategies for spawning location and migration depth to preferentially target particular regions in the adult range. This observation may help to explain the presence of gradients in molecular markers in eel samples collected across Europe. Spawning in the period of late winter – spring maximizes the average food availability along the 2-year larval trajectory. The fastest transatlantic larval migration in the model is about 2 years, and the route to Europe takes most of the larvae past the east coast of North America in the first year. These model results are consistent with the hypothesis that the European and American eel (Anguilla rostrata) could separate themselves on different sides of the Atlantic Ocean on the basis of the different durations of their larval stages.


2018 ◽  
Vol 52 (4) ◽  
pp. 279-288 ◽  
Author(s):  
F. Bakaria ◽  
S. Belhaoues ◽  
N. Djebbari ◽  
M. Tahri ◽  
I. Ladjama ◽  
...  

Abstract The aim of the study was to examine metazoans parasite communities of European eels (Anguilla anguilla) in freshwater (Tonga Lake) and brackish water (El Mellah lagoon) in the northeast of Algeria. Six parasite taxa were collected: one monogenean, Pseudodactylogyrus sp.; two crustaceans, Ergasilus sp. and Argulus foliaceus; two nematodes, Cucullanus sp. and Anguillicola crassus; one cestode, Bothriocephalus claviceps. Th e most prevalent parasite taxa in freshwater were Pseudodactylogyrus sp., A. crassus and Bothriocephalus claviceps; whereas in the brackish water, eels were infected mainly with A. crassus. Th e characteristics of the parasite component community structure revealed low parasite species diversity and high dominance values in eels from the two localities. Both communities were dominated by a single parasite species: Tonga eels by the monogenean Pseudodactylogyrus sp. and El Mellah lagoon eels by the nematode A. crassus, verified by high Berger-Parker dominance values of 0.76 and 0.87 respectively.


2020 ◽  
Vol 27 (1) ◽  
pp. 56-63
Author(s):  
Jong-Gil Park ◽  
Chang-uk Park ◽  
Kyoung-Soon Jin ◽  
Yang-Mo Kim ◽  
Hee-Young Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document