scholarly journals Development of in vitro 3D culture system to mimic lung cancer tissue

2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Désirée Baruffaldi ◽  
Marta Canta ◽  
Candido Fabrizio Pirri ◽  
Francesca Frascella

A 3D culture system based on a photocurable matrix has been developed. The aim is to create a 3D printable platform mimicking lung cancer tissue, to study tumor microenvironment evolution, in terms of structural (architecture) and molecular (signalling) components.

Reproduction ◽  
2011 ◽  
Vol 141 (6) ◽  
pp. 809-820 ◽  
Author(s):  
Candace M Tingen ◽  
Sarah E Kiesewetter ◽  
Jennifer Jozefik ◽  
Cristina Thomas ◽  
David Tagler ◽  
...  

Innovations in in vitro ovarian follicle culture have revolutionized the field of fertility preservation, but the successful culturing of isolated primary and small secondary follicles remains difficult. Herein, we describe a revised 3D culture system that uses a feeder layer of ovarian stromal cells to support early follicle development. This culture system allows significantly improved primary and early secondary follicle growth and survival. The stromal cells, consisting mostly of thecal cells and ovarian macrophages, recapitulate the in vivo conditions of these small follicles and increase the production of androgens and cytokines missing from stromal cell-free culture conditions. These results demonstrate that small follicles have a stage-specific reliance on the ovarian environment, and that growth and survival can be improved in vitro through a milieu created by pre-pubertal ovarian stromal cell co-culture.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4114-4114
Author(s):  
Li Hou ◽  
Ting Liu ◽  
Jing Tan ◽  
Wentong Meng ◽  
Li Deng

Abstract We have constructed a biomimetic hematopoietic niche (3D culture system) with bio-derived bone as framework, composited with human marrow mesenchymal stem cells, and induced the cells into osteoblasts. Our primary results showed that the biomimetic 3D culture system is capable to allow maintenance and expansion of primitive hematopoietic progenitor cells in vitro. But so far, leukemia primary cells long-term culture from patients marrow are still difficult because it is not clear how does the regulation of leukemic cells grow ex vivo, and lack of adequate investigation between leukemic stem cells with stromal cells. Based on our previous research, we cultured bone marrow mesenchymal stem cells from chronic myelogenous leukemia (CML) patients, and conceived a “pathologic biomimetic osteoblast niche”, to explore the growth of leukemia bone marrow primary cells from CML patients. Bio-derived bone was composited with marrow mesenchymal stem cells from CML patients and constructed a 3D biomimetic osteoblast niche. The mononuclear cells (MNCs) were collected with standard Ficoll-Paque separation from newly diagnosed CML patients. The MNCs were cultured for 2∼5 weeks in the 3D culture system and compared with 2D culture system. The results showed that the proportion of CD34+ cells are increased either in 3D or 2D culture systems. Compared to input, the proportion of CD34+ cells were increased 6.52(1.87∼9)vs. 3.18(1.07∼6.8)times at 2 weeks culture, and 13.6(3.59∼26.31)vs. 7.86(0.78∼18.0)times at 5 weeks culture. The proportion of CD34+/CD38- was higher in 3D culture system than 2D system. It was 5.55(2.1∼11.7)% vs. 2.4(0.9∼3.4)%, and 13.5(3.4∼34.2)% vs. 4.83(2.1∼8.9)% at 2 weeks and 5 weeks respectively. The function of cultured cells was evaluated in colony forming unit (CFU) assay and long term culture initial cell (LTC-IC) assay. 3D system produced more colonies than 2D system {103.33(82∼144)vs. 79(53∼122)} at 2 week culture and 47(33∼66)vs. 21.67(16∼27)at 5 week culture. LTC-IC are widely used as a surrogate in vitro culture for pluripotent stem cells, and those primitive progenitor cells responsible for leukemia in mice are named SL-IC or leukemia stem cells (LSCs). 3D system showed higher frequency of LTC-IC than that of 2D system after 2-week culture(2.23E-05(1.73∼2.56)vs.1.40E-05(1.21∼1.73)). FISH showed the proportion of Ph+ cells declined in both system during the culture, but not as rapidly as it did in 2D system{65%(3D)vs.63%(2D)at 2 week, 55%(3D)vs.35%(2D)at 5 week}, and the Ph+ cells were predominant derived from 3D culture. Our 3D culture system constructed with induced osteoblasts from mesnchymal stem cells in CML patients might provide a more suitable microenvironment for leukemic cells growing in vitro. The leukemic stem cells seemed to be regulated by the molecular signals mediated by osteoblast, and the biological characteristics of leukemia stem cells at least partially is maintained. It may be become a new method for studying leukemic HSCs/HPCs behavior in vitro.


Endocrinology ◽  
2015 ◽  
Vol 156 (12) ◽  
pp. 4761-4768 ◽  
Author(s):  
Margo P. Emont ◽  
Hui Yu ◽  
Heejin Jun ◽  
Xiaowei Hong ◽  
Nenita Maganti ◽  
...  

2013 ◽  
Vol 13 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Francis H. Shen ◽  
Brian C. Werner ◽  
Haixiang Liang ◽  
Hulan Shang ◽  
Ning Yang ◽  
...  

2009 ◽  
Vol 94A (1) ◽  
pp. 1-8 ◽  
Author(s):  
Hossein Hosseinkhani ◽  
Mohsen Hosseinkhani ◽  
Shunji Hattori ◽  
Rumiko Matsuoka ◽  
Nanako Kawaguchi

2021 ◽  
Author(s):  
Rui Zhang ◽  
Pengpeng Liu ◽  
Xiao Zhang ◽  
Yingnan Ye ◽  
Jinpu Yu

Abstract Background: Metastasis and relapse of lung cancer are the main cause of disease-related deaths. It’s reported that tumor metastasis and relapse originated from cancer stem cells (CSCs) which possess more potential in proliferation and invasion. In our previous studies, we established a conditional BME-based three-dimensional culture (3D culture) system to mimic the growth environment in vivo and further amplified lung cancer stem cells (LCSCs) in our system. However, the molecular mechanisms of the amplification and development of LCSCs in our 3D culture system are still not very clear. Methods: We tested the expression of Lin28 and let7 by western blot and qPCR, and constructed A549 cells either knockdown of Lin28 or overexpression of let7, followed by investigating the expression of stemness markers by flow cytometry and qPCR, and stem cell like phenotypes including cell proliferation, colony formation, mammosphere culture, cell apoptosis, migration, invasion and drug resistance in vitro, as well as tumorigenicity in vivo. Results: Here we observed Lin28A/let-7c was dysregulated in LCSCs both from the 3D culture system and from lung cancer tissues. Further, the abnormal expression of Lin28A/let-7c was correlated with poor survival outcomes. We found over-expression let-7c inhibited the maintenance of LCSC properties, while the results for knockdown of Lin28A showed Lin28A was critical for the enrichment and amplification of LCSCs via MAPK signaling pathway. Importantly, we found that either knockdown of Lin28A or over-expression of let-7c inhibited carcinogenesis and disrupted LCSC expansion in vivo. Conclusions: Our study uncovered the functions and mechanisms of the "Lin28A/let-7c/MAPK" signaling pathway in promoting the amplification and cancer stemness of LCSCs, which might be a potential therapeutic target for lung cancer therapy by reducing and even eliminating LCSCs in the future.


Biomaterials ◽  
2017 ◽  
Vol 149 ◽  
pp. 63-76 ◽  
Author(s):  
Pengpeng Liu ◽  
Rui Zhang ◽  
Wenwen Yu ◽  
Yingnan Ye ◽  
Yanan Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document