scholarly journals Reliability on timber columns under fire situation

Fire Research ◽  
2018 ◽  
Author(s):  
Auro Cândido Marcolan Júnior ◽  
Poliana Dias de Moraes

Timber structures in fire situation are subject to intrinsic uncertainties from the material and the actions on the structure and their probabilistic behavior has not being studied exhaustively. In this paper, four limit state equations using the reduced cross-section method are developed for timber columns in fire situation. The security criteria taken into account in these equations are the compression, the lateral stability and the combined bending and compression, according to the NBR 7190:1997 standard. The structural reliability analysis of five simply supported timber columns with rectangular cross-section in fire situation and different base and height ratios where performed using the first order reliability method. The overall probability of failure of the column was obtained by associating the failure criteria in a series system. The reliability behavior of the different base to height ratios was evaluated, leading to different results for the distinct ratios and the criteria used. Also, a sensitivity analysis was performed indicating the timber charring rate as the most important random variable in the reliability analysis for these limit state equations.

Author(s):  
Umberto Alibrandi ◽  
C. G. Koh

This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis in the presence of random parameters and interval uncertain parameters. In the proposed formulation, the hybrid problem is reduced to standard reliability problems, where the limit state functions are defined only in terms of the random variables. Monte Carlo simulation (MCS) for hybrid reliability analysis (HRA) is presented, and it is shown that it requires a tremendous computational effort; FORM for HRA is more efficient but still demanding. The computational cost is significantly reduced through a simplified procedure, which gives good approximations of the design points, by requiring only three classical FORMs and one interval analysis (IA), developed herein through an optimization procedure. FORM for HRA and its simplified formulation achieve a much improved efficiency than MCS by several orders of magnitude, and it can thus be applied to real-world engineering problems. Representative examples of stochastic dynamic analysis and performance-based engineering are presented.


2011 ◽  
Vol 90-93 ◽  
pp. 869-873 ◽  
Author(s):  
Xiao Lin Yu ◽  
Quan Sheng Yan

The response surface method (RSM) developed in recent years is an effective way to solve the structural reliability problems with implicit performance function. In order to improve the computational efficiency and make RSM suitable well to large and complex engineering structures, the reliability analysis method based on uniform design method (UDM) and support vector machine (SVM) was proposed. UDM is adopted to select training data and SVM is used as response surface. Structural reliability index is calculated in combination with the traditional reliability analysis methods (such as, the first-order reliability method (FORM), the second-order reliability method (SORM) or Monte Carlo simulation method (MCSM)). Numerical examples show that sampled with the UDM can greatly reduce the number of samples required for training by SVM model, and a very good approximation of the limit state surface can be obtained to get the failure probability. The reliability analysis of the under serviceability limit-state of a typical self-anchored suspension bridge——Sanchaji Bridge was carried out with the improved response surface method.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jianguo Zhang ◽  
Jiwei Qiu ◽  
Pidong Wang

This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis with hybrid variables, that is, random and interval variables. This method can significantly improve the computational efficiency for the abovementioned hybrid reliability analysis (HRA), while generally providing sufficient precision. In the proposed procedure, the hybrid problem is reduced to standard reliability problem with the polar coordinates, where an n-dimensional limit-state function is defined only in terms of two random variables. Firstly, the linear Taylor series is used to approximate the limit-state function around the design point. Subsequently, with the approximation of the n-dimensional limit-state function, the new bidimensional limit state is established by the polar coordinate transformation. And the probability density functions (PDFs) of the two variables can be obtained by the PDFs of random variables and bounds of interval variables. Then, the interval of failure probability is efficiently calculated by the integral method. At last, one simple problem with explicit expressions and one engineering application of spacecraft docking lock are employed to demonstrate the effectiveness of the proposed methods.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
C. Jiang ◽  
X. P. Huang ◽  
X. Han ◽  
D. Q. Zhang

Time-variant reliability problems caused by deterioration in material properties, dynamic load uncertainty, and other causes are widespread among practical engineering applications. This study proposes a novel time-variant reliability analysis method based on stochastic process discretization (TRPD), which provides an effective analytical tool for assessing design reliability over the whole lifecycle of a complex structure. Using time discretization, a stochastic process can be converted into random variables, thereby transforming a time-variant reliability problem into a conventional time-invariant system reliability problem. By linearizing the limit-state function with the first-order reliability method (FORM) and furthermore, introducing a new random variable, the converted system reliability problem can be efficiently solved. The TRPD avoids the calculation of outcrossing rates, which simplifies the process of solving time-variant reliability problems and produces high computational efficiency. Finally, three numerical examples are used to verify the effectiveness of this approach.


Author(s):  
J.I. Aguwa ◽  
S. Sadiku

This paper provides the results of structural reliability analysis carried out on the data of Nigerian grown Iroko tree (Chlorophora excelsa), to ascertain its structural performance as timber bridge beams. Five pieces of 50mm x 75mm x 3600mm of Nigerian grown Iroko hardwood were bought, seasoned naturally and 200 pieces of samples were prepared for determination of their strength properties, (which include bending strength parallel to grain, tensile strength parallel to grain, compressive strength parallel to grain, compressive strength perpendicular to grain and shear strength parallel to grain) at a moisture content of 18%, in accordance with the British Standard BS 373 of 1957. Statistical analysis was carried out using the strength properties for determination of mean, standard deviation, coefficient of variations, confidence limits and Chi-Square goodness of fits. Structural analysis and design of a timber bridge beam using the determined data from the Nigerian grown Iroko timber, in accordance with BS 5268 were carried out under the Ultimate Limit State of loading (ULSL). Reliability analysis was carried out to ascertain its level of safety using First-Order Reliability Method (FORM). Sensitivity analysis was also carried out by varying the depth of beam, imposed live load, breadth of the beam, unit weight of the Iroko timber, span of the beam as well as the end bearing length. The result revealed that the Nigerian grown Iroko timber is a satisfactory structural material for timber bridge beams at depth of 400mm, breadth of 150mm and span of 5000mm under the ULSL. The probabilities of failure of the Nigerian grown Iroko timber bridge beam in bending, shear, compression and deflection are respectively, under the specified conditions of loading.


Author(s):  
M. R. Khalessi ◽  
Y.-T. Wu ◽  
T. Y. Torng

Abstract This paper describes a new structural reliability analysis iteration procedure based on the concept of most probable point locus (MPPL). Using a new quadratic search algorithm, the proposed procedure examines the global behavior of the limit-state function, g, along the MPPL in the standard normal space in search of the most probable point (MPP) on the g = o surface, and identifies unusual conditions such as multiple MPPs. During the iteration procedure, the generated information is updated after each sensitivity analysis. This action helps the analyst to minimize the number of computer runs and determine the next step. By adopting two efficient convergence criteria, the proposed procedure is demonstrated to be significantly more efficient than the commonly used reliability analysis procedures, and is suitable to be integrated with existing general-purpose finite element computer programs for nondeterministic structural analysis.


2013 ◽  
Vol 477-478 ◽  
pp. 146-149
Author(s):  
Wei Dong Chen ◽  
Ping Jia ◽  
Xian De Wu ◽  
Yan Chun Yu ◽  
Feng Chao Zhang ◽  
...  

The limit state function (LSF) is implicit to many structure reliability analysis problems, which may make some classical reliability method complicated to be applied. One of the surrogate methods-support vector classification (SVC) was applied in the structural reliability analysis herein which has not been applied to structure reliability analysis until recent years. Then the advanced first order second moment method (AFOSM) can be applied. The expressions of structure system reliability sensitivity to basic variable were deduced. The flow of how to call the SVC program was presented. An example was shown to compare the SVC based method with some other classical reliability analysis methods. The results are accurately accepted and the advantages of SVC are analyzed.


2012 ◽  
Vol 226-228 ◽  
pp. 1332-1337
Author(s):  
Ming Zhu Yang ◽  
Qing Xi Wu ◽  
Jun Lu

The loads on the arch dam and the materials physical properties of the dam and the bedrock are uncertain, and can be described with random variable. Due to the huge volume, the complex structure of the dam and excessive random variable, the reliability analysis of the dam is difficult. The dam is a higher order statically indeterminate structure, and the variation of the temperature obviously affects the stress and displacement of the structure, therefore, it is very important to consider the randomness of the temperature change load in the reliability analysis of arch dam. Based on the analysis of the stable temperature field, temperature rise and temperature drop field of the dam, the calculation method of temperature change field is further studied and applied in the reliability analysis of the arch dam. Considering random variables such as temperature change, water pressure, elastic modulus and strength of the materials, the stress and displacement of the arch dam and bedrock are calculated with a three dimensional finite element method, the limit state equations are established by RSM. Then the tension and compression reliability of the arch dam are analyzed using gradient optimization method. The results indicate that the temperature change field significantly influences the tension and compression reliability of the dam, and should be seriously considered in the reliability analysis of arch dams.


2016 ◽  
Vol 12 (2) ◽  
pp. 218-253 ◽  
Author(s):  
Asma Chakri ◽  
Rabia Khelif ◽  
Mohamed Benouaret

Purpose – The first order reliability method requires optimization algorithms to find the minimum distance from the origin to the limit state surface in the normal space. The purpose of this paper is to develop an improved version of the new metaheuristic algorithm inspired from echolocation behaviour of bats, namely, the bat algorithm (BA) dedicated to perform structural reliability analysis. Design/methodology/approach – Modifications have been embedded to the standard BA to enhance its efficiency, robustness and reliability. In addition, a new adaptive penalty equation dedicated to solve the problem of the determination of the reliability index and a proposition on the limit state formulation are presented. Findings – The comparisons between the improved bat algorithm (iBA) presented in this paper and other standard algorithms on benchmark functions show that the iBA is highly efficient, and the application to structural reliability problems such as the reliability analysis of overhead crane girder proves that results obtained with iBA are highly reliable. Originality/value – A new iBA and an adaptive penalty equation for handling equality constraint are developed to determine the reliability index. In addition, the low computing time and the ease implementation of this method present great advantages from the engineering viewpoint.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 209
Author(s):  
Bolin Liu ◽  
Liyang Xie

The Kriging-based reliability method with a sequential design of experiments (DoE) has been developed in recent years for implicit limit state functions. Such methods include the efficient global reliability analysis, the active learning reliability method combining Kriging and MCS Simulations. In this research, a novel local approximation method based on the most probable failure point (MPFP) is proposed to improve such methods. In this method, the MPFP calculated in the last iteration is the center of the next sampling region. The size of the local region depends on the reliability index obtained by the First Order Reliability Method (FORM) and the deviation distance of the standard deviation. The proposed algorithm, which approximates the limit state function accurately near MPFP rather than in the whole design space, can avoid selecting samples in regions that have negligible effects on the reliability analysis results. In addition, a multi-point enrichment technique is also introduced to select multiple sample points in each iteration. After the high-quality approximation of limit state function is obtained, the failure probability is calculated by the Monte Carlo method. Four numerical examples are used to validate the accuracy and efficiency of the proposed method. Results show that the proposed method is very effective for an accurate evaluation of the failure probability.


Sign in / Sign up

Export Citation Format

Share Document