scholarly journals Kearns-Sayre syndrome with facial and white matter extensive involvement: a (mitochondrial and nuclear gene related?) neurocristopathy?

Author(s):  
Agostino Berio ◽  
Attilia Piazzi ◽  
Carlo Enrico Traverso

The Authors report on a patient with Kearns-Sayre syndrome, large mtDNA deletion (7/kb), facial abnormalities and severe central nervous system (CNS) white matter radiological features, commonly attributed to spongy alterations. The common origin from neural crest cell (NCC) of facial structures (cartilagineous, osseous, vascular and of the peripheral nervous system) and of peripheral glia and partially of the CNS white matter are underlined and the facial and glial abnormalities are attributed to the abnormal reproduction/migration of NCC. In this view, the CNS spongy alterations in KSS may be not only a dystrophic process (leukodystrophy) but also a dysplastic condition (leukodysplasia). The Authors hypothesize that the symptoms may be related to mtDNA mutations associated to NCC nuclear gene abnormality. SOX 10 gene may be a nuclear candidate gene, as reported in some case of Waardenburg IV syndrome.

2005 ◽  
Vol 122 (6) ◽  
pp. 821-833 ◽  
Author(s):  
Allan M. Goldstein ◽  
Katherine C. Brewer ◽  
Adele M. Doyle ◽  
Nandor Nagy ◽  
Drucilla J. Roberts

2011 ◽  
Vol 141 (3) ◽  
pp. 992-1002.e6 ◽  
Author(s):  
Xia Wang ◽  
Alex K.K. Chan ◽  
Mai Har Sham ◽  
Alan J. Burns ◽  
Wood Yee Chan

2020 ◽  
Vol 34 (8) ◽  
pp. 10931-10947
Author(s):  
Ming Fu ◽  
Amanda J. Barlow‐Anacker ◽  
Korah P. Kuruvilla ◽  
Gary L. Bowlin ◽  
Christopher W. Seidel ◽  
...  

Children ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 887
Author(s):  
Ting Li ◽  
Zhihong Lu ◽  
Jingjing Wang ◽  
Junyi Chen ◽  
Haidong Fu ◽  
...  

Fanconi syndrome is one of the primary renal manifestations of mitochondrial cytopathies caused by mitochondrial DNA (mtDNA) mutation. The common 4977-bp mtDNA deletion has been reported to be associated with aging and diseases involving multiple extrarenal organs. Cases of Fanconi syndrome caused by the 4977-bp deletion were rarely reported previously. Here, we report a 6-year-old girl with growth retardation in the course of Fanconi syndrome. She had mild ptosis and pigmented retinopathy. Abnormal biochemical findings included low-molecular-weight proteinuria, normoglycemic glycosuria, increased urine phosphorus excretion, metabolic acidosis, and hypophosphatemia. Growth records showed that her body weight and height were normal in the first year and failed to thrive after the age of three. Using a highly sensitive mtDNA analysis methodology, she was identified to possess the common 4977-bp mtDNA deletion. The mutation rate was 84.7% in the urine exfoliated cells, 78.67% in the oral mucosal cells, and 23.99% in the blood sample. After three months of oral coenzyme Q10 and levocarnitine treatment in combination with standard electrolyte supplement, her condition was improved. This is a report of growth retardation as the initial major clinical presentation of Fanconi syndrome caused by the deletion of the 4977-bp fragment. Renal tubular abnormality without any other extrarenal dysfunction may be an initial clinical sign of mitochondrial disorders. Moreover, considering the heterogeneity of the phenotypes associated with mtDNA mutations, the risk of developing Kearns–Sayre syndrome (KSS) with age in this patient should be noted because she had ptosis, retinal involvement, and changes in the brain and skeletal muscle.


Development ◽  
1992 ◽  
Vol 115 (2) ◽  
pp. 561-572 ◽  
Author(s):  
T.M. Luider ◽  
M.J. Peters-van der Sanden ◽  
J.C. Molenaar ◽  
D. Tibboel ◽  
A.W. van der Kamp ◽  
...  

During vertebrate embryogenesis, interaction between neural crest cells and the enteric mesenchyme gives rise to the development of the enteric nervous system. In birds, monoclonal antibody HNK-1 is a marker for neural crest cells from the entire rostrocaudal axis. In this study, we aimed to characterize the HNK-1 carrying cells and antigen(s) during the formation of the enteric nervous system in the hindgut. Immunohistological findings showed that HNK-1-positive mesenchymal cells are present in the gut prior to neural crest cell colonization. After neural crest cell colonization this cell type cannot be visualized anymore with the HNK-1 antibody. We characterized the HNK-1 antigens that are present before and after neural crest cell colonization of the hindgut. Immunoblot analysis of plasma membranes from embryonic hindgut revealed a wide array of HNK-1-carrying glycoproteins. We found that two HNK-1 antigens are present in E4 hindgut prior to neural crest cell colonization and that the expression of these antigens disappears after neural crest colonization. These two membrane glycoproteins, G-42 and G-44, have relative molecular masses of 42,000 and 44,000, respectively, and they both have isoelectric points of 5.5 under reducing conditions. We suggest that these HNK-1 antigens and the HNK-1-positive mesenchymal cells have some role in the formation of the enteric nervous system.


Sign in / Sign up

Export Citation Format

Share Document