Neural crest cell (NCC) receptors and neurotrophins in the developing murine enteric nervous system

2000 ◽  
Vol 118 (4) ◽  
pp. A595
Author(s):  
Jolanta E. Pitera ◽  
Virpi V. Smith ◽  
Peter J. Milia
2005 ◽  
Vol 122 (6) ◽  
pp. 821-833 ◽  
Author(s):  
Allan M. Goldstein ◽  
Katherine C. Brewer ◽  
Adele M. Doyle ◽  
Nandor Nagy ◽  
Drucilla J. Roberts

2011 ◽  
Vol 141 (3) ◽  
pp. 992-1002.e6 ◽  
Author(s):  
Xia Wang ◽  
Alex K.K. Chan ◽  
Mai Har Sham ◽  
Alan J. Burns ◽  
Wood Yee Chan

Development ◽  
1992 ◽  
Vol 115 (2) ◽  
pp. 561-572 ◽  
Author(s):  
T.M. Luider ◽  
M.J. Peters-van der Sanden ◽  
J.C. Molenaar ◽  
D. Tibboel ◽  
A.W. van der Kamp ◽  
...  

During vertebrate embryogenesis, interaction between neural crest cells and the enteric mesenchyme gives rise to the development of the enteric nervous system. In birds, monoclonal antibody HNK-1 is a marker for neural crest cells from the entire rostrocaudal axis. In this study, we aimed to characterize the HNK-1 carrying cells and antigen(s) during the formation of the enteric nervous system in the hindgut. Immunohistological findings showed that HNK-1-positive mesenchymal cells are present in the gut prior to neural crest cell colonization. After neural crest cell colonization this cell type cannot be visualized anymore with the HNK-1 antibody. We characterized the HNK-1 antigens that are present before and after neural crest cell colonization of the hindgut. Immunoblot analysis of plasma membranes from embryonic hindgut revealed a wide array of HNK-1-carrying glycoproteins. We found that two HNK-1 antigens are present in E4 hindgut prior to neural crest cell colonization and that the expression of these antigens disappears after neural crest colonization. These two membrane glycoproteins, G-42 and G-44, have relative molecular masses of 42,000 and 44,000, respectively, and they both have isoelectric points of 5.5 under reducing conditions. We suggest that these HNK-1 antigens and the HNK-1-positive mesenchymal cells have some role in the formation of the enteric nervous system.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicolas R. Chevalier ◽  
Yanis Ammouche ◽  
Anthony Gomis ◽  
Lucas Langlois ◽  
Thomas Guilbert ◽  
...  

AbstractWhile the colonization of the embryonic gut by neural crest cells has been the subject of intense scrutiny over the past decades, we are only starting to grasp the morphogenetic transformations of the enteric nervous system happening in the fetal stage. Here, we show that enteric neural crest cell transit during fetal development from an isotropic cell network to a square grid comprised of circumferentially-oriented cell bodies and longitudinally-extending interganglionic fibers. We present ex-vivo dynamic time-lapse imaging of this isotropic-to-nematic phase transition and show that it occurs concomitantly with circular smooth muscle differentiation in all regions of the gastrointestinal tract. Using conditional mutant embryos with enteric neural crest cells depleted of β1-integrins, we show that cell-extracellular matrix anchorage is necessary for ganglia to properly reorient. We demonstrate by whole mount second harmonic generation imaging that fibrous, circularly-spun collagen I fibers are in direct contact with neural crest cells during the orientation transition, providing an ideal orientation template. We conclude that smooth-muscle associated extracellular matrix drives a critical reorientation transition of the enteric nervous system in the mammalian fetus.


Development ◽  
2002 ◽  
Vol 129 (22) ◽  
pp. 5151-5160 ◽  
Author(s):  
Dipa Natarajan ◽  
Camelia Marcos-Gutierrez ◽  
Vassilis Pachnis ◽  
Esther de Graaff

The majority of neurones and glia of the enteric nervous system (ENS) are derived from the vagal neural crest. Shortly after emigration from the neural tube, ENS progenitors invade the anterior foregut and, migrating in a rostrocaudal direction, colonise in an orderly fashion the rest of the foregut, the midgut and the hindgut. We provide evidence that activation of the receptor tyrosine kinase RET by glial cell line-derived neurotrophic factor (GDNF) is required for the directional migration of ENS progenitors towards and within the gut wall. We find that neural crest-derived cells present within foetal small intestine explants migrate towards an exogenous source of GDNF in a RET-dependent fashion. Consistent with an in vivo role of GDNF in the migration of ENS progenitors, we demonstrate that Gdnf is expressed at high levels in the gut of mouse embryos in a spatially and temporally regulated manner. Thus, during invasion of the foregut by vagal-derived neural crest cells, expression of Gdnf was restricted to the mesenchyme of the stomach, ahead of the invading NC cells. Twenty-four hours later and as the ENS progenitors were colonising the midgut,Gdnf expression was upregulated in a more posterior region —the caecum anlage. In further support of a role of endogenous GDNF in enteric neural crest cell migration, we find that in explant cultures GDNF produced by caecum is sufficient to attract NC cells residing in more anterior gut segments. In addition, two independently generated loss-of-function alleles of murine Ret, Ret.k— and miRet51, result in characteristic defects of neural crest cell migration within the developing gut. Finally, we identify phosphatidylinositol-3 kinase and the mitogen-activated protein kinase signalling pathways as playing crucial roles in the migratory response of enteric neural crest cells to GDNF.


2020 ◽  
Vol 34 (8) ◽  
pp. 10931-10947
Author(s):  
Ming Fu ◽  
Amanda J. Barlow‐Anacker ◽  
Korah P. Kuruvilla ◽  
Gary L. Bowlin ◽  
Christopher W. Seidel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document