Eastern margin of the coast plutonic complex in Whitesail Lake map area, British Columbia

1978 ◽  
Author(s):  
G J Woodsworth
1979 ◽  
Vol 16 (10) ◽  
pp. 1988-1997 ◽  
Author(s):  
Gregg W. Morrison ◽  
Colin I. Godwin ◽  
Richard L. Armstrong

Sixteen new K–Ar dates and four new Rb–Sr isochrons help define four plutonic suites in the Whitehorse map area, Yukon. The Triassic(?) suite, defined on stratigraphic evidence, is the southern extension of the Yukon Crystalline Terrane and is correlative with plutonic suites in the Intermontane Belt in British Columbia. The mid-Cretaceous (~100 Ma) suite in the Intermontane Belt in the Whitehorse map area is time equivalent to plutonic suites in the Omineca Crystalline Belt to the east. Late Cretaceous (~70 Ma) and Eocene (~55 Ma) suites include volcanic and subvolcanic as well as plutonic phases and are correlative with continental volcano–plutonic suites near the eastern margin of the Coast Plutonic Complex. The predominance of the mid-Cretaceous suite in the Intermontane Belt in Whitehorse and adjacent map areas in Yukon and northern British Columbia suggests that this area has undergone posttectonic magmatism more characteristic of the Omineca Crystalline Belt than of the Intermontane Belt elsewhere in the Canadian Cordillera.87Sr/86Sr initial ratio determinations suggest that the southern extension of the Yukon Crystalline Terrane in the western part of the Whitehorse map area and in northern British Columbia includes Precambrian crust separated from the North American craton by Paleozoic oceanic crust of the Intermontane Belt.


2009 ◽  
Vol 121 (9-10) ◽  
pp. 1362-1380 ◽  
Author(s):  
J. Brian Mahoney ◽  
Sarah M. Gordee ◽  
James W. Haggart ◽  
Richard M. Friedman ◽  
Larry J. Diakow ◽  
...  

2012 ◽  
Vol 49 (7) ◽  
pp. 796-817 ◽  
Author(s):  
E.H. Brown

The San Juan Islands – northwest Cascades thrust system in Washington and British Columbia is composed of previously accreted terranes now assembled as four broadly defined composite nappes stacked on a continental footwall of Wrangellia and the Coast Plutonic Complex. Emplacement ages of the nappe sequence are interpreted from zircon ages, field relations, and lithlogies, to young upward. The basal nappe was emplaced prior to early Turonian time (∼93 Ma), indicated by the occurrence of age-distinctive zircons from this nappe in the Sidney Island Formation of the Nanaimo Group. The emplacement age of the highest nappe in the thrust system postdates 87 Ma detrital zircons within the nappe. The nappes bear high-pressure – low-temperature (HP–LT) mineral assemblages indicative of deep burial in a thrust wedge; however, several features indicate that metamorphism occurred prior to nappe assembly: metamorphic discontinuities at nappe boundaries, absence of HP–LT assemblages in the footwall to the nappe pile, and absence of significant unroofing detritus in the Nanaimo Group. A synorogenic relationship of the thrust system to the Nanaimo Group is evident from mutually overlapping ages and by conglomerates of Nanaimo affinity that lie within the nappe pile. From the foregoing relations, and broader Cordilleran geology, the tectonic history of the nappe terranes is interpreted to involve initial accretion and subduction-zone metamorphism south of the present locality, uplift and exhumation, orogen-parallel northward transport of the nappes as part of a forearc sliver, and finally obduction at the present site over the truncated south end of Wrangellia and the Coast Plutonic Complex.


1992 ◽  
Vol 29 (4) ◽  
pp. 812-829 ◽  
Author(s):  
C. J. Greig ◽  
R. L. Armstrong ◽  
J. E. Harakal ◽  
D. Runkle ◽  
P. van der Heyden

New U–Pb, K–Ar, and Rb–Sr dates from the Eagle Plutonic Complex and adjacent map units place timing constraints on intrusive and deformational events along the southwestern margin of the Intermontane Belt. U–Pb zircon minimum dates for Eagle tonalite and gneiss (148 ± 6, 156 ± 4, and 157 ± 4 Ma) document previously unrecognized Middle to Late Jurassic magmatism and syn-intrusive deformation along the eastern margin of the Eagle Plutonic Complex and the southwestern margin of the Intermontane terrane. Widespread mid-Cretaceous (Albian–Cenomanian) resetting of K–Ar and Rb–Sr isotopic systematics in Jurassic and older rocks is coeval and cogenetic with emplacement of plutons of the Fallslake Plutonic Suite (110.5 ± 2 Ma, U–Pb) which crosscut Jurassic plutons and structures but were themselves ductilely deformed along the Pasayten fault during sinistral, east-side-up, reverse displacement. K–Ar and Rb–Sr cooling dates for the Fallslake Suite of ca. 100 Ma, including dates from mylonites along the Pasayten fault, suggest that uplift, cooling, and unroofing of the Eagle Plutonic Complex occurred in mid-Cretaceous time along the Pasayten fault. Regional geologic evidence suggests that this thermal and unroofing event affected much of the southwest margin of the Intermontane Belt. Initial 87Sr/86Sr ratios and U–Pb geochronometry for the Fallslake Plutonic Suite suggest that it was derived, in part, from preexisting and relatively nonradiogenic Paleozoic to Mesozoic crust. K–Ar dating of several stocks demonstrates widespread Early Eocene plutonism in the Coquihalla area, and dating of the Needle Peak pluton indicates plutonism continued into Middle Eocene time.


Sign in / Sign up

Export Citation Format

Share Document