scholarly journals Geology, Sturgeon Lake greenstone belt, western Superior Province, Ontario

2005 ◽  
Author(s):  
M Sanborn-Barrie ◽  
T Skulski
1980 ◽  
Vol 17 (5) ◽  
pp. 560-568 ◽  
Author(s):  
G. S. Clark ◽  
S.-P. Cheung

Rb–Sr whole-rock ages have been determined for rocks from the Oxford Lake – Knee Lake – Gods Lake greenstone belt, in the Superior Province of northeastern Manitoba.The age of the Magill Lake Pluton is 2455 ± 35 Ma (λ87Rb = 1.42 × 10−11 yr−1), with an initial 87Sr/86Sr ratio of 0.7078 ± 0.0043. This granitic stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism.The age of the Bayly Lake Pluton is 2424 ± 74 Ma, with an initial 87Sr/86Sr ratio of 0.7029 ± 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed.The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 ± 125 Ma, with an initial 87Sr/86Sr ratio of 0.7014 ± 0.0009.The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granitic intrusion in the area.The age for the Hayes River Group volcanic rocks is consistent with Rb–Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province.


2004 ◽  
Author(s):  
M Sanborn-Barrie ◽  
T Skulski ◽  
J Parker

1999 ◽  
Vol 36 (6) ◽  
pp. 945-966 ◽  
Author(s):  
Eva Zaleski ◽  
Otto van Breemen ◽  
Virginia L Peterson

Fifty million years of Archean evolution is recorded in the Manitouwadge greenstone belt and the Wawa-Quetico boundary region, from ca. 2720 Ma volcanism and subvolcanic plutonism associated with massive sulphide deposits and hydrothermal alteration zones, to 2689-2687 Ma and 2680-2677 Ma synkinematic plutonism. In the greenstone belt, greywackes were deposited after 2693 Ma, post-dating local volcanism by at least 25 Ma, and requiring that the volcanic-sedimentary contact is an unconformity or a fault. In migmatitic greywackes in the Quetico subprovince, detrital zircons limit the depositional age to <2690 Ma, permitting correlation of greywackes across the Wawa-Quetico subprovince boundary. Upward-facing inclined F2 folds that deform the volcanic-sedimentary contact are bracketed by the 2687 ± 2 Ma Loken Lake pluton, which shows strong D2 fabrics, and by 2680+4-3 Ma foliated granite which cuts D2 fabrics. Dextral transpression producing regional F3 folds and the overall east-west trends of the Wawa-Quetico boundary region post-dated the 2680 ± 2 Ma Nama Creek pluton. Field relationships and isotopic ages support correlation of greywackes across the subprovince boundary, and demonstrate that most or all of the ductile deformation post-dated sedimentation. Ductile structures, especially those associated with dextral transpression, are not directly related to juxtaposition of the Wawa and Quetico subprovinces, as these were already contiguous, either through sedimentation on a volcanic substrate or as a result of earlier cryptic structures. Our results imply that the belt-like configuration of the subprovinces, emphasized in accretionary models of the Superior Province, is a relatively late feature that overprints older, tectonically significant structures.


Author(s):  
Jonathan O'Neil ◽  
Charles Maurice ◽  
Ross K. Stevenson ◽  
Jeff Larocque ◽  
Christophe Cloquet ◽  
...  

2006 ◽  
Vol 43 (7) ◽  
pp. 789-803 ◽  
Author(s):  
Jen Parks ◽  
Shoufa Lin ◽  
Don Davis ◽  
Tim Corkery

A combined U–Pb and field mapping study of the Island Lake greenstone belt has led to the recognition of three distinct supracrustal assemblages. These assemblages record magmatic episodes at 2897, 2852, and 2744 Ma. Voluminous plutonic rocks within the belt range in age from 2894 to 2730 Ma, with a concentration at 2744 Ma. U–Pb data also show that a regional fault that transects the belt, the Savage Island shear zone, is not a terrane-bounding structure. The youngest sedimentary group in the belt, the Island Lake Group, has an unconformable relationship with older plutons. Sedimentation in this group is bracketed between 2712 and 2699 Ma. This group, and others similar to it in the northwestern Superior Province, is akin to Timiskaming-type sedimentary groups found throughout the Superior Province and in other Archean cratons. These data confirm that this belt experienced a complex geological history that spanned at least 200 million years, which is typical of greenstone belts in this area. Age correlations between the Island Lake belt and other belts in the northwest Superior Province suggest the existence of a volcanic "megasequence". This evidence, in combination with Nd isotopic data, indicates that the Oxford–Stull domain, and the Munro Lake, Island Lake, and North Caribou terranes may have been part of a much larger reworked Mesoarchean crustal block, the North Caribou superterrane. It appears that the Superior Province was assembled by accretion of such large independent crustal blocks, whose individual histories involved extended periods of autochthonous development.


1981 ◽  
Vol 18 (2) ◽  
pp. 323-329 ◽  
Author(s):  
A. Turek ◽  
T. E. Smith ◽  
C. H. Huang

The Gamitagama greenstone belt is situated to the south of the Archean Wawa belt of the Superior Province, and is about 50 km south of Wawa, Ontario. The Rb–Sr ages being reported here show that the metavolcanic and associated metasedimentary rocks are older than 2665 ± 45 Ma, which is a whole-rock isochron age of the pretectonic or syntectonic trondhjemitic plutons. The Gamitagama Lake complex, a calcalkalic differentiated and multiple diorite pluton, postdates the regional metamorphism and gives an age of 2645 ± 100 Ma. Potassic granitoid stocks, which are considered to be coeval with the Gamitagama Lake complex, define an isochron age of 2590 ± 80 Ma. The greenstone belt and associated intrusives are adjacent to the Southern batholith, a complex terrain of gneisses and migmatites, for which an isochron age of 2570 ± 90 Ma has been obtained. The radiometric ages reported here support the established stratigraphic sequence and prove that the rocks are Archean in age.


Sign in / Sign up

Export Citation Format

Share Document