scholarly journals Ultrasound diagnosis of ulnar nerve entrapment by confirming baseline cross-sectional area measurement for normal and abnormal nerves

2015 ◽  
Vol 19 (1) ◽  
Author(s):  
Tania Roodt ◽  
Barbara Van Dyk ◽  
Sylvia Jacobs

Background: Magnetic resonance imaging is most commonly employed, alongside electrodiagnostic studies, in the diagnosis of ulnar nerve entrapment. It is expensive, time consuming, not readily available to the general public, and limits imaging to a segment of the nerve at any given time. In contrast, high-frequency ultrasound is an inexpensive imaging modality with a flexible field of view through which the nerve can be traced. An ultrasound cross-sectional area (CSA) >0.075 cm² has previously been suggested as indicative of nerve entrapment. Objectives: To confirm the suggested CSA measurement of 0.075 cm² and discuss the difference in CSA measurement between abnormal nerves, nerves in the contra-lateral elbow of the same participant, and those of asymptomatic participants. Methods: Ultrasonography was performed on both elbows of 25 patients with confirmed unilateral ulnar nerve entrapment and on 25 healthy controls for comparison. Three CSA measurements were taken of the ulnar nerve along its course, and the mean measurement was recorded.Results: CSA measurements were significantly different between patients with ulnar nerve entrapment and healthy controls (p < 0.05). In our study, a CSA >0.070 cm² defined ulnar nerve entrapment at the elbow. Conclusion: Ultrasound CSA measurement of the ulnar nerve is accurate in the diagnosis of ulnar nerve entrapment. The range of values and varied criteria previously reported call for standardisation of the procedure and CSA measurement. We suggest that a measurement of 0.070 cm² be considered as a new baseline for the optimal diagnosis of ulnar nerve entrapment.[PDF to follow]

2021 ◽  
Vol 94 (1121) ◽  
pp. 20200173
Author(s):  
Shamrendra Narayan ◽  
Amit Goel ◽  
Ajai Kumar Singh ◽  
Anup Kumar Thacker ◽  
Neha Singh ◽  
...  

Objectives: The aim of this observational study was ultrasound evaluation of peripheral nerves cross-sectional area (CSA) in subjects with probable diabetic peripheral sensorimotor neuropathy (DPN). CSA was analyzed with reference to clinical and nerve conduction study’s (NCS) parameters for early diagnosis and pattern of involvement. Methods: A total of 50 patients with probable DPN due to Type 2 diabetes and 50 age-matched healthy controls underwent sonographic examinations of ulnar nerve at the lower arm, median nerve proximal to carpal tunnel, the common peroneal nerve proximal to fibular head, tibial nerve proximal to the tarsal tunnel, and sural nerve at lower third leg. Results: CSA was increased in cases of DPN as compared to healthy controls. Area changes were more marked with demyelinating pattern. Probable DPN cases with normal NCS had significantly higher number of peripheral nerves showing increased CSA as compared to healthy control. A cut-off of >4 nerve thickening showed a sensitivity of 86 %, and specificity of 56%. The neuropathy pattern in the lower limb was axonal, whereas in the upper limb, it was demyelinating with the majority showing sonographic feature of associated compressive neuropathy. Conclusion: There is an increase in CSA of peripheral nerve in diabetic patients. It can be used as a morphological marker for classifying DPN with changes being picked up earlier to NCS abnormality. Clinical neurological presentation in probable DPN can also be due to compressive neuropathy in early phases, and ultrasound can be a useful tool. Advances in knowledge: Early pick up of DPN cases shall be useful for early therapy and motivating the patients to actively participate in the treatment. Morphological changes on ultrasonography precedes the electrodiagnostic change in DPN. Symptoms of DPN is not only due to metabolic changes but also compressive neuropathy.


1990 ◽  
Vol 24 (3) ◽  
pp. 219-227 ◽  
Author(s):  
Ed Vanbavel ◽  
Trudi Mooij ◽  
Maurice J.M.M. Giezeman ◽  
Jos A.E. Spaan

Radiology ◽  
2011 ◽  
Vol 259 (3) ◽  
pp. 808-815 ◽  
Author(s):  
Andrea S. Klauser ◽  
Ethan J. Halpern ◽  
Ralph Faschingbauer ◽  
Florian Guerra ◽  
Carlo Martinoli ◽  
...  

2021 ◽  
pp. 20210290
Author(s):  
Ankita Aggarwal ◽  
Chandan Jyoti Das ◽  
Neena Khanna ◽  
Raju Sharma ◽  
Deep Narayan Srivastava ◽  
...  

Objective: Early detection of peripheral neuropathy is extremely important as leprosy is one of the treatable causes of peripheral neuropathy. The study was undertaken to assess the role of diffusion tensor imaging (DTI) in ulnar neuropathy in leprosy patients. Methods: This was a case–control study including 38 patients (72 nerves) and 5 controls (10 nerves) done between January 2017 and June 2019. Skin biopsy proven cases of leprosy, having symptoms of ulnar neuropathy (proven on nerve conduction study) were included. MRI was performed on a 3 T MR system. Mean cross-sectional area, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of ulnar nerve at cubital tunnel were calculated. Additional ancillary findings and appearance of base sequences were evaluated. Results: Ulnar nerve showed thickening with altered T2W signal in all the affected nerves, having an average cross-sectional area of 0.26 cm2. Low FA with mean of 0.397 ± 0.19 and high ADC with mean of 1.28 ± 0.427 x 10 −3 mm2/s of ulnar nerve in retrocondylar groove was obtained. In the control group, mean cross-sectional area was 0.71cm2 with mean FA and ADC of 0.53 ± 0.088 and 1.03 ± 0.24 x 10 −3 mm2/s respectively. Statistically no significant difference was seen in diseased and control group. Cut-off to detect neuropathy for FA and ADC is 0.4835 and 1.1020 × 10 −3 mm2/s respectively. Conclusion: DTI though is challenging in peripheral nerves, however, is proving to be a powerful complementary tool for assessment of peripheral neuropathy. Our study validates its utility in infective neuropathies. Advances in knowledge: 1. DTI is a potential complementary tool for detection of peripheral neuropathies and can be incorporated in standard MR neurography protocol. 2. In leprosy-related ulnar neuropathy, altered signal intensity with thickening or abscess of the nerve is appreciated along with locoregional nodes and secondary denervation changes along with reduction of FA and rise in ADC value. 3. Best cut-offs obtained in our study for FA and ADC are 0.4835 and 1.1020 × 10 −3 mm2/s respectively.


2019 ◽  
Vol 22 (8) ◽  
pp. 721-728
Author(s):  
Laura H Rayhel ◽  
Jessica M Quimby ◽  
Eric M Green ◽  
Valerie J Parker ◽  
Shasha Bai

Objectives The aim of this study was to evaluate the intra- and inter-rater reliability of epaxial muscle cross-sectional area measurement on feline CT images and to determine the relationship between normalized epaxial muscle area (EMA) and subjective muscle condition score (MCS). Methods Feline transverse CT images including the junction of the 13th thoracic vertebrae/13th rib head were retrospectively reviewed. Right and left epaxial muscle circumference and vertebral body height were measured and an average normalized EMA (ratio of epaxial area:vertebral height) was calculated for each image. Measurements were performed by three individuals blinded to the clinical data and were repeated 1 month later. Intra- and inter-rater reliability of EMA was assessed with concordance correlation coefficient (CCC), and Bland–Altman analysis was performed to assess bias and limits of agreement (LoA) between and within observers at different time points. In cats for which MCS data were available, EMA was compared between differing MCSs via the Kruskal–Wallis test, with Bonferroni-corrected Wilcoxon rank-sum post-hoc analysis. Results In total, 101 CT scans met the inclusion criteria for reliability analysis, 29 of which had muscle condition information available for analysis. Intra-rater EMA CCC ranged from 0.84 to 0.99 with minimal bias (range –0.16 to 0.08) and narrow LoA. Inter-rater EMA CCC ranged from 0.87 to 0.94, bias was larger (range –0.46 to 0.66) and LoA were wider when assessed between observers. Median EMA was significantly lower in cats with severe muscle atrophy (2.76, range 1.28–3.96) than in all other MCS groups ( P <0.0001 for all comparisons). Conclusions and relevance Measurement of EMA on CT showed strong intra-rater reliability, and median EMA measurements were significantly lower in cats with severe muscle wasting, as assessed on physical examination. Further studies correlating EMA to lean muscle mass in cats are needed to determine whether this method may be useful to quantify muscle mass in patients undergoing a CT scan.


Sign in / Sign up

Export Citation Format

Share Document