scholarly journals Design and development of mixed film of pectin: Ethyl cellulose for colon specific drug delivery of sennosides and Triphala

2008 ◽  
Vol 70 (3) ◽  
pp. 338 ◽  
Author(s):  
Munira Momin ◽  
K Pundarikakshudu ◽  
SA Nagori
2015 ◽  
Vol 14 (9) ◽  
pp. 1541-1547
Author(s):  
T Dang ◽  
Y Cui ◽  
Y Chen ◽  
X Meng ◽  
B Tang ◽  
...  

Purpose: To prepare and evaluate colon specific drug delivery system of diclofenac sodium for highly localized delivery to the colon.Methods: The colon specific drug delivery system was prepared as matrix-type microspheres using Ethyl Cellulose (EC), Cellulose Acetate Phthalate (CAP), and Eudragit L 100-55 by the Solvent Evaporation Method. Microspheres were evaluated for physical properties like drug content, particle size, bulk density and angle of repose.Results: The size range of the microcapsules was 228 to 608 μm while drug content was between 74.49 and 91.50 % depending on the polymer used and the  polymer ratio. Mean bulk density was < 1.2 g/ml which indicates the good flow properties, while angle of repose was < 40 o, indicating free-flowing properties. The microspheres were spherical in shape with smooth and nonporous surface, except that the microspheres containing EC and CAP exhibited a rough and porous  surface. The microspheres containing Eudragit L 100-55 in combination with other polymers gave better sustained release (78.9 and 76.6 % at the end of 8 h for  formulation F4 and F5, respectively) than the others.Conclusion: Microspheres prepared with drug: EC: CAP ratio of 1:2:1 show the highest drug content, possess good flow properties and surface morphology, as well as promising drug release for colon specific drug delivery of diclofenac sodium for possible treatment of colorectal cancer.Keywords: Diclofenac, Colorectal cancer, Microspheres, Ethyl cellulose, Cellulose acetate phthalate, Eudragit L 100-55


2015 ◽  
Vol 13 (1) ◽  
pp. 105-113 ◽  
Author(s):  
GR Godge ◽  
SN Hiremath

Colon is being extensively investigated as a drug delivery site. This study contains comparison of the usual enteric coating polymers viz. xanthan gum, guar gum, chitosan and ethyl cellulose, as carriers for colon specific drug delivery. Lactose based metoprolol succinate tablets were prepared. These were coated with one of the coating polymers to a varying coat thickness. Tablets were prepared using polysaccharides or synthetic polymer as binders. These included xanthan gum, guar gum, chitosan and ethyl cellulose. Metoprolol Succinate was used as a model drug. The prepared tablets were enteric coated with kollicoat MAE 100 DP to give protection in the stomach. The coated tablets were tested in-vitro for their suitability as colon specific drug delivery systems. The drug release studies were carried out in simulated stomach environment (pH 1.2) for 2 h followed by small intestinal environment at pH 6.8. The dissolution data obtained from tablets demonstrates that the dissolution rate of the tablet is dependent upon the type and concentration of polysaccharide/polymer used as binder. The results demonstrate that enteric coated tablets containing 3% chitosan as a binder, showed only 12.5% drug release in the first 5 h, which is the usual upper gastrointestinal transit time, whereas, tablets prepared using guar gum as binder, were unable to protect drug release under similar conditions. Preparations with xanthan gum as a binder formed time-dependent release formulations. When used in a concentration of 5.92% in the tablets, 28% drug release was observed in the usual upper gastrointestinal tract conditions. It was also found that enteric coated preparation formulated with 8.88% of kollicoat MAE 100 DP as binder could be used to carry water insoluble drug molecules. The above study shows that chitosan could be successfully used as a binder, for colon targeting of water insoluble drugs in preference to guar gum when used in the same concentration. Additionally, formulations developed with chitosan and kollicoat MAE 100 DP would be highly site specific since drug release would be at a retarded rate till microbial degradation or polymer solubilization takes place in the colon. DOI: http://dx.doi.org/10.3329/dujps.v13i1.21874 Dhaka Univ. J. Pharm. Sci. 13(1): 105-113, 2014 (June)


2015 ◽  
Vol 42 (4) ◽  
pp. 611-623 ◽  
Author(s):  
Sudhir T. Bansode ◽  
Sanjay J. Kshirsagar ◽  
Ashwini R. Madgulkar ◽  
Mangesh R. Bhalekar ◽  
Mithun M. Bandivadekar

2020 ◽  
Vol 10 ◽  
Author(s):  
Rupali Singh ◽  
Rishabha Malviya

Background: The chronotherapy concept attains considerable focus towards itself due to its pulsatile fashion rather than continuous delivery. The delivery of the right amount of drug to the target organ at the most appropriate time is fulfilled by using the chronotherapeutic dosage form. Aim: The present study aims to develop and evaluate a chronotherapeutic drug delivery system by using natural polymer for time specific drug delivery at the target site. Material and Method: Tamarind seed polysaccharide was extracted and used in the preparation of core tablets. Nine formulations of core tablets were prepared with nifedipine at 5 tonnes of pressure on 6 mm punch. The core tablets were prepared by using the compression coating method. The three batches F1, F2 and F3 were prepared by using tamarind gum in different concentration i.e. 45%, 22.5% and 67.5% respectively and compressed at 8 tonnes of pressure on 12 mm of punch. The finally compressed tablet was coated with different concentrations of ethyl cellulose in which isopropyl alcohol used as a solvent. In a controlled medium, a stability study was performed to evaluate the physical appearance, drug content and release of the prepared core tablet. Result: All the nine formulations of tablets were prepared successfully and the evaluation studies (thickness, weight variation, hardness, friability etc.) revealed that all the formulations were within the official range. The release study of the drug revealed that the formulation F7 containing 67.5% of tamarind polymer, coated with 2%, 4% and 5% of ethyl cellulose solution released 59.68±1.03% (Q50%) drug within 5 h whereas, 87.09±2.08% (Q80%) within 6 h and within 12 h 97.74±2.19% of the drug was released. The formulation F7 was found to be more effective as it released the maximum amount of drug in a short period as compared with other formulations. Conclusion: The coating of core tablets allowed to prepare pharmaceutical dosage form for time specific drug delivery. These chronotherapeutic core tablets can be used for the treatment of angina pectoris and hypertension etc.


2016 ◽  
Vol 27 (31) ◽  
pp. 315105 ◽  
Author(s):  
Lin Hou ◽  
Yuyang Shi ◽  
Guixiang Jiang ◽  
Wei Liu ◽  
Huili Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document