scholarly journals Effect of 15-Deoxy-[INCREMENT]12,14-prostaglandin J2 Nanocapsules on Inflammation and Bone Regeneration in a Rat Bone Defect Model

2017 ◽  
Vol 130 (3) ◽  
pp. 347-356 ◽  
Author(s):  
Qi Tang ◽  
Li-Li Chen ◽  
Fen Wei ◽  
Wei-Lian Sun ◽  
Li-Hong Lei ◽  
...  
2018 ◽  
Vol 37 (6) ◽  
pp. 912-918 ◽  
Author(s):  
Reo IKUMI ◽  
Takayuki MIYAHARA ◽  
Norio AKINO ◽  
Noriko TACHIKAWA ◽  
Shohei KASUGAI

2020 ◽  
Vol 24 (20) ◽  
pp. 12199-12210
Author(s):  
Han Xiao ◽  
Linfeng Wang ◽  
Tao Zhang ◽  
Can Chen ◽  
Huabin Chen ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1454 ◽  
Author(s):  
Yun-Liang Chang ◽  
Chia-Ying Hsieh ◽  
Chao-Yuan Yeh ◽  
Feng-Huei Lin

In clinical practice, bone defects still remain a challenge. In recent years, apart from the osteoconductivity that most bone void fillers already provide, osteoinductivity has also been emphasized to promote bone healing. Stromal-cell-derived factor-1 (SDF-1) has been shown to have the ability to recruit mesenchymal stem cells (MSCs), which play an important role in the bone regeneration process. In this study, we developed a gelatin–hyaluronate (Gel-HA) copolymer mixed with calcium sulfate (CS), hydroxyapatite (HAP), and SDF-1 in order to enhance bone regeneration in a bone defect model. The composites were tested in vitro for biocompatibility and their ability to recruit MSCs after material characterization. For the in vivo test, a rat femoral condyle bone defect model was used. Micro computed tomography (Micro-CT), two-photon excitation microscopy, and histology analysis were performed to assess bone regeneration. As expected, enhanced bone regeneration was well observed in the group filled with Gel-HA/CS/HAP/SDF-1 composites compared with the control group in our animal model. Furthermore, detailed blood analysis of rats showed no obvious systemic toxicity or side effects after material implantation. In conclusion, the Gel-HA/CS/HAP/SDF-1 composite may be a safe and applicable material to enhance bone regeneration in bone defects.


2019 ◽  
Vol 24 (5) ◽  
pp. 1651-1661
Author(s):  
Tobias Moest ◽  
Karl Andreas Schlegel ◽  
Marco Kesting ◽  
Matthias Fenner ◽  
Rainer Lutz ◽  
...  

Author(s):  
Umadevi Kandalam ◽  
Toshihisa Kawai ◽  
Geeta Ravindran ◽  
Ross Brockman ◽  
Jorge Romero ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 822
Author(s):  
Yun-Liang Chang ◽  
Chia-Ying Hsieh ◽  
Chao-Yuan Yeh ◽  
Chih-Hao Chang ◽  
Feng-Huei Lin

Bone defects of orthopedic trauma remain a challenge in clinical practice. Regarding bone void fillers, besides the well-known osteoconductivity of most bone substitutes, osteoinductivity has also been gaining attention in recent years. It is known that stromal cell-derived factor-1 (SDF-1) can recruit mesenchymal stem cells (MSCs) in certain circumstances, which may also play an important role in bone regeneration. In this study, we fabricated a gelatin/hyaluronate (Gel/HA) copolymer mixed with hydroxyapatite (HAP) and SDF-1 to try and enhance bone regeneration in a bone defect model. After material characterization, these Gel/HA–HAP and Gel/HA–HAP–SDF-1 composites were tested for their biocompatibility and ability to recruit MSCs in vitro. A femoral condyle bone defect model of rats was used for in vivo studies. For the assessment of bone healing, micro-CT analysis, second harmonic generation (SHG) imaging, and histology studies were performed. As a result, the Gel/HA–HAP composites showed no systemic toxicity to rats. Gel/HA–HAP composite groups both showed better bone generation compared with the control group in an animal study, and the composite with the SDF-1 group even showed a trend of faster bone growth compared with the composite without SDF-1 group. In conclusion, in the management of traumatic bone defects, Gel/HA–HAP–SDF-1 composites can be a feasible material for use as bone void fillers.


2017 ◽  
Vol 9 (49) ◽  
pp. 42639-42652 ◽  
Author(s):  
A. Sivashanmugam ◽  
Pornkawee Charoenlarp ◽  
S. Deepthi ◽  
Arunkumar Rajendran ◽  
Shantikumar V. Nair ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document