Local administration of stromal cell-derived factor-1 promotes stem cell recruitment and bone regeneration in a rat periodontal bone defect model

2015 ◽  
Vol 53 ◽  
pp. 83-94 ◽  
Author(s):  
Hongrui Liu ◽  
Minqi Li ◽  
Lingqian Du ◽  
Pishan Yang ◽  
Shaohua Ge
Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1454 ◽  
Author(s):  
Yun-Liang Chang ◽  
Chia-Ying Hsieh ◽  
Chao-Yuan Yeh ◽  
Feng-Huei Lin

In clinical practice, bone defects still remain a challenge. In recent years, apart from the osteoconductivity that most bone void fillers already provide, osteoinductivity has also been emphasized to promote bone healing. Stromal-cell-derived factor-1 (SDF-1) has been shown to have the ability to recruit mesenchymal stem cells (MSCs), which play an important role in the bone regeneration process. In this study, we developed a gelatin–hyaluronate (Gel-HA) copolymer mixed with calcium sulfate (CS), hydroxyapatite (HAP), and SDF-1 in order to enhance bone regeneration in a bone defect model. The composites were tested in vitro for biocompatibility and their ability to recruit MSCs after material characterization. For the in vivo test, a rat femoral condyle bone defect model was used. Micro computed tomography (Micro-CT), two-photon excitation microscopy, and histology analysis were performed to assess bone regeneration. As expected, enhanced bone regeneration was well observed in the group filled with Gel-HA/CS/HAP/SDF-1 composites compared with the control group in our animal model. Furthermore, detailed blood analysis of rats showed no obvious systemic toxicity or side effects after material implantation. In conclusion, the Gel-HA/CS/HAP/SDF-1 composite may be a safe and applicable material to enhance bone regeneration in bone defects.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 822
Author(s):  
Yun-Liang Chang ◽  
Chia-Ying Hsieh ◽  
Chao-Yuan Yeh ◽  
Chih-Hao Chang ◽  
Feng-Huei Lin

Bone defects of orthopedic trauma remain a challenge in clinical practice. Regarding bone void fillers, besides the well-known osteoconductivity of most bone substitutes, osteoinductivity has also been gaining attention in recent years. It is known that stromal cell-derived factor-1 (SDF-1) can recruit mesenchymal stem cells (MSCs) in certain circumstances, which may also play an important role in bone regeneration. In this study, we fabricated a gelatin/hyaluronate (Gel/HA) copolymer mixed with hydroxyapatite (HAP) and SDF-1 to try and enhance bone regeneration in a bone defect model. After material characterization, these Gel/HA–HAP and Gel/HA–HAP–SDF-1 composites were tested for their biocompatibility and ability to recruit MSCs in vitro. A femoral condyle bone defect model of rats was used for in vivo studies. For the assessment of bone healing, micro-CT analysis, second harmonic generation (SHG) imaging, and histology studies were performed. As a result, the Gel/HA–HAP composites showed no systemic toxicity to rats. Gel/HA–HAP composite groups both showed better bone generation compared with the control group in an animal study, and the composite with the SDF-1 group even showed a trend of faster bone growth compared with the composite without SDF-1 group. In conclusion, in the management of traumatic bone defects, Gel/HA–HAP–SDF-1 composites can be a feasible material for use as bone void fillers.


Author(s):  
Umadevi Kandalam ◽  
Toshihisa Kawai ◽  
Geeta Ravindran ◽  
Ross Brockman ◽  
Jorge Romero ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (15) ◽  
pp. 1683-1692 ◽  
Author(s):  
Vincent F.M. Segers ◽  
Tomotake Tokunou ◽  
Luke J. Higgins ◽  
Catherine MacGillivray ◽  
Joseph Gannon ◽  
...  

2020 ◽  
Vol 21 (15) ◽  
pp. 5454
Author(s):  
Yohei Nishida ◽  
Yusuke Hashimoto ◽  
Kumi Orita ◽  
Kazuya Nishino ◽  
Takuya Kinoshita ◽  
...  

The stromal-cell-derived factor-1α (SDF-1) is well-known for playing important roles in the regeneration of tissue by enhancing cell migration. However, the effect of SDF-1 in meniscal healing remains unknown. The purpose of this study is to investigate the effects of intra-articular injection of SDF-1 on meniscus healing in a rat meniscal defect model. The intra-articular SDF-1 injection was performed at meniscectomy and one week later. Macroscopic and histological assessments of the reparative meniscus were conducted at one, two and six weeks after meniscectomy in rats. In the macroscopic evaluation, the SDF-1 group showed an increase in the size of the reparative meniscus at six weeks after meniscectomy compared to the phosphate-buffered saline (PBS) injection (no-treatment) group. Histological findings showed that intra-articular injection of SDF-1 enhanced the migration of macrophages to the site of the regenerative meniscus at one and two weeks after meniscectomy. CD68- and CD163-positive cells in the SDF-1 group at one week after meniscectomy were significantly higher than in the no-treatment group. CD163-positive cells in the SDF-1 group at two weeks were significantly higher than in the no-treatment group. At one week after meniscectomy, there were cells expressing mesenchymal-stem-cell-related markers in the SDF-1 group. These results indicate the potential of regenerative healing of the meniscus by SDF-1 injection via macrophage and mesenchymal stem cell accumulation. In the present study, intra-articular administration of SDF-1 contributed to meniscal healing via macrophage, CD90-positive cell and CD105-positive cell accumulation in a rat meniscal defect model. The SDF-1–CXCR4 pathway plays an important role in the meniscal healing process. For potential clinical translation, SDF-1 injection therapy seems to be a promising approach for the biological augmentation in meniscal injury areas to enhance healing capacity.


Sign in / Sign up

Export Citation Format

Share Document