scholarly journals Fabrication of Stromal Cell-Derived Factor-1 Contained in Gelatin/Hyaluronate Copo006Cymer Mixed with Hydroxyapatite for Use in Traumatic Bone Defects

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 822
Author(s):  
Yun-Liang Chang ◽  
Chia-Ying Hsieh ◽  
Chao-Yuan Yeh ◽  
Chih-Hao Chang ◽  
Feng-Huei Lin

Bone defects of orthopedic trauma remain a challenge in clinical practice. Regarding bone void fillers, besides the well-known osteoconductivity of most bone substitutes, osteoinductivity has also been gaining attention in recent years. It is known that stromal cell-derived factor-1 (SDF-1) can recruit mesenchymal stem cells (MSCs) in certain circumstances, which may also play an important role in bone regeneration. In this study, we fabricated a gelatin/hyaluronate (Gel/HA) copolymer mixed with hydroxyapatite (HAP) and SDF-1 to try and enhance bone regeneration in a bone defect model. After material characterization, these Gel/HA–HAP and Gel/HA–HAP–SDF-1 composites were tested for their biocompatibility and ability to recruit MSCs in vitro. A femoral condyle bone defect model of rats was used for in vivo studies. For the assessment of bone healing, micro-CT analysis, second harmonic generation (SHG) imaging, and histology studies were performed. As a result, the Gel/HA–HAP composites showed no systemic toxicity to rats. Gel/HA–HAP composite groups both showed better bone generation compared with the control group in an animal study, and the composite with the SDF-1 group even showed a trend of faster bone growth compared with the composite without SDF-1 group. In conclusion, in the management of traumatic bone defects, Gel/HA–HAP–SDF-1 composites can be a feasible material for use as bone void fillers.

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1454 ◽  
Author(s):  
Yun-Liang Chang ◽  
Chia-Ying Hsieh ◽  
Chao-Yuan Yeh ◽  
Feng-Huei Lin

In clinical practice, bone defects still remain a challenge. In recent years, apart from the osteoconductivity that most bone void fillers already provide, osteoinductivity has also been emphasized to promote bone healing. Stromal-cell-derived factor-1 (SDF-1) has been shown to have the ability to recruit mesenchymal stem cells (MSCs), which play an important role in the bone regeneration process. In this study, we developed a gelatin–hyaluronate (Gel-HA) copolymer mixed with calcium sulfate (CS), hydroxyapatite (HAP), and SDF-1 in order to enhance bone regeneration in a bone defect model. The composites were tested in vitro for biocompatibility and their ability to recruit MSCs after material characterization. For the in vivo test, a rat femoral condyle bone defect model was used. Micro computed tomography (Micro-CT), two-photon excitation microscopy, and histology analysis were performed to assess bone regeneration. As expected, enhanced bone regeneration was well observed in the group filled with Gel-HA/CS/HAP/SDF-1 composites compared with the control group in our animal model. Furthermore, detailed blood analysis of rats showed no obvious systemic toxicity or side effects after material implantation. In conclusion, the Gel-HA/CS/HAP/SDF-1 composite may be a safe and applicable material to enhance bone regeneration in bone defects.


2021 ◽  
pp. 1-7
Author(s):  
Jin Xi Lim ◽  
Min He ◽  
Alphonsus Khin Sze Chong

BACKGROUND: An increasing number of bone graft materials are commercially available and vary in their composition, mechanism of action, costs, and indications. OBJECTIVE: A commercially available PLGA scaffold produced using 3D printing technology has been used to promote the preservation of the alveolar socket after tooth extraction. We examined its influence on bone regeneration in long bones of New Zealand White rabbits. METHODS: 5.0-mm-diameter circular defects were created on the tibia bones of eight rabbits. Two groups were studied: (1) control group, in which the bone defects were left empty; (2) scaffold group, in which the PLGA scaffolds were implanted into the bone defect. Radiography was performed every two weeks postoperatively. After sacrifice, bone specimens were isolated and examined by micro-computed tomography and histology. RESULTS: Scaffolds were not degraded by eight weeks after surgery. Micro-computed tomography and histology showed that in the region of bone defects that was occupied by scaffolds, bone regeneration was compromised and the total bone volume/total volume ratio (BV/TV) was significantly lower. CONCLUSION: The implantation of this scaffold impedes bone regeneration in a non-critical bone defect. Implantation of bone scaffolds, if unnecessary, lead to a slower rate of fracture healing.


2019 ◽  
Vol 20 (23) ◽  
pp. 6002 ◽  
Author(s):  
Chih-Hsiang Fang ◽  
Yi-Wen Lin ◽  
Feng-Huei Lin ◽  
Jui-Sheng Sun ◽  
Yuan-Hung Chao ◽  
...  

The development of a novel alloplastic graft with both osteoinductive and osteoconductive properties is still necessary. In this study, we tried to synthesize a biomimetic hydroxyapatite microspheres (gelatin/nano-hydroxyapatite microsphere embedded with stromal cell-derived factor-1: GHM-S) from nanocrystalline hydroxyapatites and to investigate their therapeutic potential and effects on bone regeneration. In this study, hydroxyapatite was synthesized by co-precipitation of calcium hydroxide and orthophosphoric acid to gelatin solution. The microbial transglutaminase was used as the agent to crosslink the microspheres. The morphology, characterization, and thermal gravimetric analysis of microspheres were performed. SDF-1 release profile and in vitro biocompatibility and relative osteogenic gene expression were analyzed, followed by in vivo micro-computed tomography study and histological analysis. The synthesized hydroxyapatite was found to be similar to hydroxyapatite of natural bone tissue. The stromal cell-derived factor-1 was embedded into gelatin/hydroxyapatite microsphere to form the biomimetic hydroxyapatite microsphere. The stromal cell-derived factor-1 protein could be released in a controlled manner from the biomimetic hydroxyapatite microsphere and form a concentration gradient in the culture environment to attract the migration of stem cells. Gene expression and protein expression indicated that stem cells could differentiate or develop into pre-osteoblasts. The effect of bone formation by the biomimetic hydroxyapatite microsphere was assessed by an in vivo rats’ alveolar bone defects model and confirmed by micro-CT imaging and histological examination. Our findings demonstrated that the biomimetic hydroxyapatite microsphere can enhance the alveolar bone regeneration. This design has potential be applied to other bone defects.


2019 ◽  
Vol 25 (17-18) ◽  
pp. 1300-1309 ◽  
Author(s):  
Jiaqi Huang ◽  
Hui Chi ◽  
Haiyang Chi ◽  
Lirong Qiu ◽  
Yufu Wang ◽  
...  

2020 ◽  
Vol 24 (20) ◽  
pp. 12199-12210
Author(s):  
Han Xiao ◽  
Linfeng Wang ◽  
Tao Zhang ◽  
Can Chen ◽  
Huabin Chen ◽  
...  

1995 ◽  
Vol 32 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Carles Bosch ◽  
Birte Melsen ◽  
Karin Vargervik

Guided bone regeneration is defined as controlled stimulation of new bone formation in a bony defect, either by osteogenesis, osteoinduction, or osteoconduction, re-establishing both structural and functional characteristics. Bony defects may be found as a result of congenital anomalies, trauma, neoplasms, or infectious conditions. Such conditions are often associated with severe functional and esthetic problems. Corrective treatment is often complicated by limitations in tissue adaptations. The aim of the investigation was to compare histologically the amount of bone formed in an experimentally created parietal bone defect protected with one or two polytetrafluoroethylene membranes with a contralateral control defect. A bony defect was created bilaterally in the parietal bone lateral to the sagittal suture in 29 6-month-old male Wistar rats. The animals were divided into two groups: (1) In the double membrane group (n=9), the left experimental bone defect was protected by an outer polytetrafluoroethylene membrane under the periosteum and parietal muscles and an inner membrane between the dura mater and the parietal bone. (2) In the single membrane group (n=20), only the outer membrane was placed. The right defect was not covered with any membrane and served as control. The animals were killed after 30 days. None of the control defects demonstrated complete or partial bone regeneration. In the single membrane group, the experimental site did not regenerate in 15 animals, partially in four, and completely in one. In the double membrane group, six of the experimental defects had complete closure with bone, two had partial closure, and one no closure. The use of two membranes protecting the bone edges of the parietal defect from the overlying tissues and underlying brain enhanced bone regeneration in experimental calvarial bone defects. The biologic role of the dura mater may not be of critical importance in new bone regeneration in these calvarial bone defects.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 476
Author(s):  
Horia Opris ◽  
Cristian Dinu ◽  
Mihaela Baciut ◽  
Grigore Baciut ◽  
Ileana Mitre ◽  
...  

The aim of this study is to systemically review the available evidence on the in vivo behavior of eggshell as a guided bone regeneration substitute material. Five databases (PubMed, Cochrane, Web of Science, Scopus, EMBASE) were searched up to October 2020. In vivo animal studies with a bone defect model using eggshell as a grafting material were included. Risk of bias was assessed using SYRCLE tool and the quality assessment using the ARRIVE guidelines. Overall, a total of 581 studies were included in the study, 187 after duplicate removal. Using the inclusion and exclusion criteria 167 records were further excluded. The full text of the remaining 20 articles was assessed for eligibility and included in the qualitative and quantitative assessment synthesis. There were different methods of obtaining eggshell grafting materials. Eggshell is a biocompatible grafting material, with osteoconduction proprieties. It forms new bone similar to Bio-Oss and demineralized freeze-dried bone matrix. It can be combined with other materials to enhance its proprieties. Due to the high variability of the procedures, animals, production and assessment methods, no meta-analysis could be performed. Eggshell might be considered a promising biomaterial to be used in bone grafting procedures, though further research is needed.


Sign in / Sign up

Export Citation Format

Share Document