scholarly journals Addition of a pontic to all-ceramic Turkom-Cera fixed partial denture restorations

2013 ◽  
Vol 07 (02) ◽  
pp. 233-238
Author(s):  
Bulent Uludag ◽  
Emre Tokar ◽  
Serdar Polat

ABSTRACTHigh-strength all-ceramic materials are commonly used in dentistry. When complications occur in an all-ceramic restoration, the restoration is usually replaced. This article describes the time-saving ability and cost-effectiveness of this novel technique for the addition of a pontic in two complicated clinical cases. Turkom-CeraTM [Turkom-Ceramic (M) Sdn. Bhd.] with aluminum oxide (99.98%) is an all-ceramic system that offers the option of addition of a new pontic to the sintered framework. The new pontic was cut off from an alumina blank [Turkom-Ceramic (M) Sdn. Bhd.], moistened, and attached to the framework using alumina gel [Turkom-Ceramic (M) Sdn. Bhd.]. The framework was veneered with veneering porcelain (Vita VM 7; VITA Zahnfabrik). The two cases presented here involving the addition of a pontic to sintered framework were followed up for at least 1 year. No complication was detected or reported by the patients. Alumina- and zirconia-based ceramics are particularly suitable for for all-ceramic restorations in high-stress bearing areas. However, replacement of a failed all-ceramic restoration is not the most practical solution, considering both cost and tooth-related factors. This attractive feature of the Turkom-Cera allows the repair of a fractured ceramic coping or the addition of a new pontic to restorations.

2008 ◽  
Vol 02 (01) ◽  
pp. 63-68
Author(s):  
Süha Turkaslan ◽  
Arzu Tezvergil-Mutluay

ABSTRACTAll ceramic fixed partial dentures (FPD)s exhibit enhanced biocompatibility and esthetics as compared to metal-ceramic restorations. However, framework fractures are frequently reported especially when the connector dimensions are inadequate to withstand the high tensile stresses. The repair of the failed connector would be desirable rather than the complete removal and renewal since the latter is an expensive and time consuming procedure. Furthermore, the replacement or removal of the restoration for extra-oral repair purposes might increase the risk of destroying the entire restoration or damaging the abutment teeth during the removal. This article presents a direct intra-oral method that may be used to repair the connector fractures of all-ceramic FPDs which are otherwise clinically satisfactory. In the present technique, the connector is reconstructed intraorally utilizing composite resin restorative material reinforced with E-glass-fiber. (Eur J Dent 2008;2:63-68)


2018 ◽  
Vol 11 (3) ◽  
pp. 1553-1563
Author(s):  
Ghassan Abdul-Hamid Naji ◽  
Ros Anita Omar ◽  
Rosiyah Yahya

High-strength all-ceramic systems for fixed partial dentures (FPDs) are necessary for replacing missing teeth. The ability to fabricate a restoration outside the mouth and subsequently integrate it with a tooth extends the range of materials available to be utilized by a dentist. This article presents a review of the development of all-ceramic restorations, including the evolution and development of materials, technologies and how to improve the strength of all-ceramic restorations, with respect to survival, applications, strength, color, and aesthetics. New core/framework materials have developed and evolved over the last decade because of the growth of ceramic materials and systems currently available for utilization. A search of English language reviewed literature was undertaken, which focused on the evidence-based published research articles. This review also elucidates the various all-ceramic materials and systems currently available for clinical use, and that no single universal material or system exists for all clinical cases. Successful implementation depends on the clinicians, materials, manufacturing techniques, and individual clinical condition. Further longitudinal clinical studies are recommended for the development of ceramic materials and systems.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 199-207
Author(s):  
Lohitha Kalluri ◽  
Bernard Seale ◽  
Megha Satpathy ◽  
Josephine F. Esquivel-Upshaw ◽  
Yuanyuan Duan

This study was performed as an adjunct to an existing clinical study to validate the effect of veneer: framework thickness ratio on stress distribution in an implant-supported all-ceramic fixed partial denture. Two commercially available titanium dental implants with corresponding customized abutments and a patient-retrieved all-ceramic fixed partial denture were scanned using a high-resolution micro-CT scanner. Reconstructed 3D objects, along with a simulated bone surface, were incorporated into a non-manifold assembly and meshed simultaneously using Simpleware software (Synopsys Simpleware ScanIP Version P-2019.09; Mountain View, CA). Three such volume meshes (Model A, Model B, Model C) corresponding to veneer: framework thickness ratios of 3:1, 1:1, and 1:3 respectively were created, and exported to a finite element analysis software (ABAQUS). An axial load of 110 N was applied uniformly on the occlusal surfaces to calculate the static stresses and contour plots were generated in the post-processing module. From the data obtained, we observed optimum stress distribution in Model B. Also, the tensile stresses were concentrated in the posterior connector region of the prosthesis in all three models tested. Within the limitations of this study, we can conclude that equal thickness of veneer and framework layers would aid in better stress distribution.


2004 ◽  
Vol 92 (3) ◽  
pp. 220-223 ◽  
Author(s):  
Roberto Pellecchia ◽  
Ki-Ho Kang ◽  
Hiroshi Hirayama

2009 ◽  
Vol 5 (4) ◽  
pp. 1349-1355 ◽  
Author(s):  
Marc Philipp Dittmer ◽  
Philipp Kohorst ◽  
Lothar Borchers ◽  
Meike Stiesch-Scholz

Author(s):  
Il Seok Park ◽  
Se Young Choi ◽  
Myung Hyun Lee ◽  
Dae Joon Kim ◽  
Jung Suk Han

Sign in / Sign up

Export Citation Format

Share Document