scholarly journals Hybridization quality and bond strength of adhesive systems according to interaction with dentin

2013 ◽  
Vol 07 (03) ◽  
pp. 315-326 ◽  
Author(s):  
Luciana Andrea Salvio ◽  
Vinicius Di Hipólito ◽  
Adriano Luis Martins ◽  
Mario Fernando de Goes

ABSTRACT Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives - Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems - Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system - Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37΀C for 24 h and then sectioned into beams (0.8 mm 2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey′s test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P < 0.05); no significance was found between ADSE and XE (P > 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P < 0.05). The bonding interface of SB showed the most intense silver uptake. SE and ADSE showed more favorable hybridization quality than that observed for ADP and XE. Conclusions: The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin.

2017 ◽  
Vol 41 (3) ◽  
pp. 214-218 ◽  
Author(s):  
Tathiane Larissa Lenzi ◽  
Fabio Zovico Maxnuck Soares ◽  
Rachel de Oliveira Rocha

Objective: To evaluate the effect of bonding strategy on microtensile bond strength (μTBS) of a new universal adhesive system to primary tooth dentin. Study design: Flat dentin surfaces from 25 primary molars were assigned to 5 groups according to the adhesive and bonding approach: Adper Single Bond 2 (two-step etch-and-rinse adhesive) and Clearfil SE Bond (two-step self-etch system), as controls; Scotchbond Universal Adhesive–self-etch, dry or wet-bonding etch-and-rinse strategies. Composite buildups were constructed and the teeth were sectioned to obtain bonded sticks (0.8 mm2) to be tested under tension at 1mm/min. The μTBS means were analyzed by one-way ANOVA and Tukey's tests (α = 0.05). Failure mode was evaluated using a stereomicroscope (400×). Results: Universal adhesive applied following both dry and wet-bonding etch-and-rinse strategies showed similar bond strength compared with control adhesive systems. Self-etch approach resulted in the lowest μTBS values. For all groups, adhesive/mixed failure prevailed. The percentage of premature debonded specimens was higher when the universal adhesive was used as self-etch mode. Conclusion: The universal adhesive does not share the same versatility of being used in the etch-and-rinse and self-etch approaches; however, the use of the new adhesive following either wet or dry-bonding may be a suitable option as alternative to two-step etch-and-rinse adhesive protocol.


2017 ◽  
Vol 28 (4) ◽  
pp. 474-481 ◽  
Author(s):  
Mário Alexandre Coelho Sinhoreti ◽  
Eveline Freitas Soares ◽  
Gabriel Flores Abuna ◽  
Lourenço Correr Sobrinho ◽  
Jean-François Roulet ◽  
...  

Abstract The aim of this study was to evaluate microtensile bond strength (µTBS) of self-etch and etch-and-rinse adhesives systems compared in different dentin regions (central-CD or proximal-PD) in a class II cavity configuration. A class II (mesial-oclusal-distal) cavity configuration was simulated on 20 extracted human third-molars (4 mm wide/3 mm deep). Etch-and-rinse adhesive (Scotchbond Multi Purpose, n=5, SBMP and Optibond FL, n=5, OPFL) and self-etch adhesives (Clearfil SE Bond, n=5, CSE and Optibond XTR, n=5, OPXTR) were applied. Class II restorations were performed by incremental technique and photo-activated (Bluephase/G2). Samples were sectioned to beam shape (1 mm² cross-section), placed on Geraldeli’s device for µTBS test (0.5 mm/min cross-head speed). Fracture patterns were analyzed on stereomicroscope and classified as cohesive-resin, adhesive, mixed/resin or mixed/dentin. Samples (n=4) were prepared for scanning electron microscope observation. Data were submitted to one-way ANOVA with Split-Plot arrangement and Tukey’s test (α=0.05). There were no statistically significant differences among SBMP, OPFL, CSE and OPXTR on CD (p>0.05). However, on PD for SBMP and OPFL, µTBS values were significantly lower compared to CSE and OPXTR (p<0.05). In all groups, mixed failure pattern was more frequently observed, except for SBMP/CD (adhesive). In class II type cavity configuration, PD location negatively influenced bond strength of etch-and-rinse adhesive systems. Opposite to self-etching adhesives, which presented higher bond strength values compared to etch-and-rinse adhesives in PD.


Marine Drugs ◽  
2020 ◽  
Vol 18 (5) ◽  
pp. 263 ◽  
Author(s):  
Eugenia Baena ◽  
Sandra R Cunha ◽  
Tatjana Maravić ◽  
Allegra Comba ◽  
Federica Paganelli ◽  
...  

The aim of the present study was to evaluate the effect of 0.1% chitosan (Ch) solution as an additional primer on the mechanical durability and enzymatic activity on dentine using an etch-and-rinse (E&R) adhesive and a universal self-etch (SE) adhesive. Microtensile bond strength and interfacial nanoleakage expression of the bonded interfaces for all adhesives (with or without pretreatment with 0.1% Ch solution for 1 min and air-dried for 5 s) were analyzed immediately and after 10,000 thermocycles. Zymograms of protein extracts from human dentine powder incubated with Optibond FL and Scotchbond Universal on untreated or Ch-treated dentine were obtained to examine dentine matrix metalloproteinase (MMP) activities. The use of 0.1% Ch solution as an additional primer in conjunction with the E&R or SE adhesive did not appear to have influenced the immediate bond strength (T0) or bond strength after thermocycling (T1). Zymography showed a reduction in MMP activities only for mineralized and demineralized dentine powder after the application of Ch. Application of 0.1% Ch solution does not increase the longevity of resin–dentine bonds. Nonetheless, the procedure appears to be proficient in reducing dentine MMP activities within groups without adhesive treatments. Further studies are required to comprehend the cross-linking of Ch with dentine collagen.


2016 ◽  
Vol 27 (6) ◽  
pp. 705-711 ◽  
Author(s):  
Karina Kato Carneiro ◽  
Marcia Margarete Meier ◽  
Clenilton Costa dos Santos ◽  
Adeilton Pereira Maciel ◽  
Ceci Nunes Carvalho ◽  
...  

Abstract To evaluate the effect of incorporating niobium phosphate bioactive glass (NbG) into commercial etch-and-rinse adhesive systems, with and without silane, on their degree of conversion (DC) (%) and microtensile bond strength (μTBS). The NbG micro-filler was added to two etch-and-rinse adhesive systems: One Step (OS) and Prime & Bond (PB) at 40% concentration. The following groups were formed: control without glass addition OS; addition of unsilanized NbG (OSNbG); addition of silanized NbG (OSNbGS); control without glass PB; addition of unsilanized NbG (PBNbG); addition of silanized NbG (PBNbGS). The DC was determined using total Fourier spectroscopy reflection (FTIR/ATR). For μTBS testing, 48 human third molars (n=8) were restored and sliced to obtain specimens (0.8 mm2) and they were tested at two different time intervals: immediately and after 6 months. The fracture mode was evaluated with a stereoscopic loupe (40×) and by scanning electron microscopy (SEM). The data were subjected to ANOVA and Tukey tests (a=0.05). NbG addition did not compromise the adhesive system DC values (p>0.05). Furthermore, the NbG added to the adhesive systems did not affect μTBS values (p>0.05). Fracture occurred predominantly at the dentin-adhesive interface. NbG bioactive glass did not affect the DC or microtensile bond strength results.


2012 ◽  
Vol 37 (6) ◽  
pp. 610-616 ◽  
Author(s):  
RL Quock ◽  
JA Barros ◽  
SW Yang ◽  
SA Patel

SUMMARY The aim of this in vitro study was to investigate the effect of the cariostatic and preventive agent silver diamine fluoride (SDF) on the microtensile bond strength of resin composite to dentin. Forty-two caries-free, extracted molars were flattened occlusally and apically using a diamond saw, and the exposed occlusal dentin was polished with a series of silicon carbide papers, all under water irrigation. The teeth were then randomly divided into six groups of seven teeth each that were treated as follows: 1) Peak SE self-etch bonding agent; 2) 12% SDF + Peak SE; 3) 38% SDF + Peak SE; 4) Peak LC etch-and-rinse bonding agent; 5) 12% SDF + Peak LC; and 6) 38% SDF + Peak LC. Four-millimeter buildups of Amelogen Plus were incrementally placed on all teeth; after a 24-hour storage period in distilled water, the specimens were sectioned perpendicular to the adhesive interface to produce beams of cross-sectional surface area measuring approximately 1 mm2. The beams were placed on a microtensile testing machine, which utilized a single-speed pump motor and force gauge at 20 kgf × 0.01 second to record maximum tensile force before failure occurred. Two-way analysis of variance and post hoc Tukey tests were performed to compare the effects of the SDF on microtensile bond strength, with statistical significance set at α = 0.05. None of the experimental groups treated with different concentrations of SDF showed a significant difference in bond strength compared to the control groups, and there was no significant difference in bond strength between self-etch and etch-and-rinse groups. However, the effect of SDF on self-etch bonded teeth compared to etch-and-rinse bonded teeth was statistically significant (p=0.0363), specifically at the 12% concentration. SDF does not adversely affect the bond strength of resin composite to noncarious dentin.


2020 ◽  
Vol 14 (1) ◽  
pp. 408-415
Author(s):  
Isabella A. Gomes ◽  
Mário G. N. Gomes ◽  
Flávia L. B. Amaral ◽  
Fabiana M. G. França ◽  
Roberta T. Basting ◽  
...  

Objective: This study investigated whether different aging protocols have effects on the bond strength of total-etch and self-etch adhesive systems to dentin substrate. Methods: Molars were sectioned exposing the dentin, which was submitted to restorative procedures using two-step total-etch (ASB, Adper SingleBond2), two-step self-etch (CLF, Clearfil SEBond), or one-step self-etch (OPT, Optibond All-in-One) system and resin composite. The obtained blocks were sectioned to result in sticks to be submitted to bond strength and failure mode tests after 24h storage in distilled water (DW), or 180-day aging protocols in DW, artificial saliva (AS), citric acid (CA), or thermal cycling (TC). The types of failures were classified as adhesive, cohesive in dentin, cohesive in composite resin, and mixed. Data were analyzed using ANOVA followed by Tukey’s test (α=5%). The failure modes were descriptive under the relative frequencies form. Results: It was observed that ASB presented the higher bond strength(p<0.05), while CLF and OPT did not demonstrate differences between them(p>0.05) after 24h. The bond strength obtained with ASB significantly overcame that of OPT when stored in DW or AS for 180 days (p<0.001). In these storing mediums, ASB did not differ from CLF(p>0.05), while in CA or TC the values of CLF were significantly lower (p<0.001). In TC aging, the values presented by OPT did not differ from ASB(p>0.05), both of which had higher values than CLF(p<0.05). The predominant failure mode was adhesive. Conclusion: For the two-step total-etch and two-step self-etch adhesives, the influence of aging in AS and TC was equivalent to that of storage in DW. The most deleterious effects occurred in CA, a situation in which self-etch adhesives displayed worse performance than the conventional type.


Author(s):  
Omnia M. Sami ◽  
Essam A. Naguib ◽  
Rasha H. Afifi ◽  
Shaymaa M. Nagi

Abstract Objective Bonding to different dentin substrates influences resin composite restoration outcomes. This study investigated the influence of different adhesion protocols on the shear bond strength of universal adhesive systems to sound and artificial caries-affected dentin (CAD). Materials and Methods Occlusal enamel of 80 premolars were wet grinded to obtain flat midcoronal dentin. Specimens were equally divided according to the substrate condition: sound and CAD by subjecting to pH-cycling for 14 days. Each dentin substrate was bonded with the adhesive systems used in this study: Single Bond universal adhesive or Prime&Bond universal (applied either in etch-and-rinse or self-etch adhesion protocol). Adhesive systems were utilized according to manufacturers’ instructions, then resin composite was built up. Specimens were tested for shear bond strength. The data were analyzed by three-way analysis of variance, and failure modes were determined using stereomicroscope. Results There was no statistically significant difference between the two tested adhesive systems on artificially created CAD with different adhesion protocols. On sound dentin, Single Bond universal, either in the etch-and-rinse or self-etch adhesion protocols, revealed higher statistically significant shear bond strength mean values compared with CAD. Conclusion Single Bond universal adhesive in an etch-and-rinse adhesion protocol improved only bonding to sound dentin, while no added positive effect for the etching step with Prime&Bond universal adhesive was found when bonded to both sound and CAD substrates. The influence of CAD on the performance of the universal adhesives was material-dependent.


2014 ◽  
Vol 39 (4) ◽  
pp. 416-426 ◽  
Author(s):  
M Taschner ◽  
M Kümmerling ◽  
U Lohbauer ◽  
L Breschi ◽  
A Petschelt ◽  
...  

SUMMARY Purpose The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Materials and Methods Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S3 Bond, XenoV+, and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. Results At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S3 Bond, and XenoV+ showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. Conclusion The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.


2013 ◽  
Vol 38 (1) ◽  
pp. 48-56 ◽  
Author(s):  
HA El-Deeb ◽  
HH Al Sherbiney ◽  
EH Mobarak

SUMMARY Objective: To evaluate the dentin bond strength durability of adhesives containing modified-monomer with/without-fluoride after storage in artificial saliva and under intrapulpal pressure simulation (IPPS). Materials and Methods: The occlusal enamel of 48 freshly extracted teeth was trimmed to expose midcoronal dentin. Roots were sectioned to expose the pulp chamber and to connect the specimens to the pulpal-pressure assembly. Specimens were assigned into four groups (n=12) according to adhesive system utilized: a two-step etch-and-rinse adhesive system (SB, Adper Single Bond 2, 3M ESPE), a two-step self-etch adhesive system (CSE, Clearfil SE Bond, Kuraray Medical Inc), and two single-step self-etch adhesives with the same modified monomer (bis-acrylamide)—one with fluoride (AOF, AdheSE One F, Ivoclar-Vivadent) and the other without (AO, AdheSE One, Ivoclar-Vivadent). Bonding was carried out while the specimens were subjected to 15-mm Hg IPPS. Resin composite (Valux Plus, 3M ESPE) buildups were made. After curing, specimens were aged in artificial saliva and under 20-mm Hg IPPS at 37°C in a specially constructed incubator either for 24 hours or six months prior to testing. Bonded specimens (n=6/group) were sectioned into sticks (n=24/group) with a cross section of 0.9 ± 0.01 mm2 and subjected to microtensile bond strength (μTBS) testing using a universal testing machine. Data were statistically analyzed using two-way analysis of variance (ANOVA) with repeated measures, one-way ANOVA tests, and a t-test (p&lt;0.05). Failure modes were determined using a scanning electron microscope. Results: The μTBS values of SB and CSE fell significantly after six-month storage in artificial saliva and under IPPS, yet these values remained significantly higher than those for the other two adhesives with modified monomers. There was no significant difference in the bond strength values between fluoride-containing and fluoride-free self-etch adhesive systems (AOF and AO) after 24 hours or six months. Modes of failure were mainly adhesive and mixed. Conclusions: Based on the results of this study, 1) Fluoride addition did not affect dentin bond durability; and 2) despite the fact that the single-step adhesive system with modified monomer showed stability, bond strengths associated with these systems remained lower than those of multistep adhesive systems.


Sign in / Sign up

Export Citation Format

Share Document