scholarly journals Exploring the potential application of dental pulp stem cells in neuroregenerative medicine

2022 ◽  
Vol 17 (4) ◽  
pp. 775
Author(s):  
Nessma Sultan ◽  
BenA Scheven
2022 ◽  
Author(s):  
Shu-Lin Guo ◽  
Chih-Hui Chin ◽  
Chi-Jung Huang ◽  
Chih-Cheng Chien ◽  
Yih-Jing Lee

Stem cell-based therapy has been evaluated in many different clinical trials for various diseases. This capability was applied in various neurodegenerative diseases, such as Alzheimer’s disease, which is characterized by synaptic damage accompanied by neuronal loss. Dental pulp stem cells (DPSCs) are mesenchymal stem cells from the oral cavity and have been studied with potential application for regeneration of different tissues. Heat shock protein 27 (HSP27) is known to regulate neurogenesis in the process of neural differentiation of placenta-multipotent stem cells. Here, we hypothesize that HSP27 expression is also critical in neural differentiation of DPSCs. An evaluation of the possible role of HSP27 in differentiation of DPSCs was per-formed by gene knockdown and neural immunofluorescent staining. We found that HSP27 has a role in the differentiation of DPSCs and that knockdown of HSP27 in DPSCs renders cells to oligodendrocyte progenitors. In other words, shHSP27-DPSCs showed NG2-positive immunoreactivity and gave rise to oligodendrocytes or type-2 astrocytes. This neural differentiation of DPSCs may have clinical significance for treatment of patients with neurodegenerative diseases. In conclusion, our data provide an example of oligodendrocyte differentiation of a DPSCs model that may have potential application in human regenerative medicine.


2017 ◽  
Vol 14 (7) ◽  
Author(s):  
Junjun Liu ◽  
Zhi Liu ◽  
Chunyan Wang ◽  
Fang Yu ◽  
Wenping Cai ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuko Nitahara-Kasahara ◽  
Mutsuki Kuraoka ◽  
Posadas Herrera Guillermo ◽  
Hiromi Hayashita-Kinoh ◽  
Yasunobu Maruoka ◽  
...  

Abstract Background Duchenne muscular dystrophy (DMD) is an inherited progressive disorder that causes skeletal and cardiac muscle deterioration with chronic inflammation. Dental pulp stem cells (DPSCs) are attractive candidates for cell-based strategies for DMD because of their immunosuppressive properties. Therefore, we hypothesized that systemic treatment with DPSCs might show therapeutic benefits as an anti-inflammatory therapy. Methods To investigate the potential benefits of DPSC transplantation for DMD, we examined disease progression in a DMD animal model, mdx mice, by comparing them with different systemic treatment conditions. The DPSC-treated model, a canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients, also underwent comprehensive analysis, including histopathological findings, muscle function, and locomotor activity. Results We demonstrated a therapeutic strategy for long-term functional recovery in DMD using repeated DPSC administration. DPSC-treated mdx mice and CXMDJ showed no serious adverse events. MRI findings and muscle histology suggested that DPSC treatment downregulated severe inflammation in DMD muscles and demonstrated a milder phenotype after DPSC treatment. DPSC-treated models showed increased recovery in grip-hand strength and improved tetanic force and home cage activity. Interestingly, maintenance of long-term running capability and stabilized cardiac function was also observed in 1-year-old DPSC-treated CXMDJ. Conclusions We developed a novel strategy for the safe and effective transplantation of DPSCs for DMD recovery, which included repeated systemic injection to regulate inflammation at a young age. This is the first report on the efficacy of a systemic DPSC treatment, from which we can propose that DPSCs may play an important role in delaying the DMD disease phenotype.


2021 ◽  
Vol 6 (9) ◽  
pp. 2742-2751
Author(s):  
Myung Chul Lee ◽  
Hoon Seonwoo ◽  
Kyoung Je Jang ◽  
Shambhavi Pandey ◽  
Jaewoon Lim ◽  
...  

2021 ◽  
Vol 400 (2) ◽  
pp. 112466
Author(s):  
J.F. Huo ◽  
M.L. Zhang ◽  
X.X. Wang ◽  
D.H. Zou

2021 ◽  
pp. 002203452110048
Author(s):  
B. Michot ◽  
S.M. Casey ◽  
J.L. Gibbs

Dental pulp stem cells (DPSCs) are important in tooth physiology, contributing to development, repair, regeneration, and immunomodulatory processes. However, their role in inflammatory mechanisms underlying pulpitis is not well understood. We evaluated the influence of DPSCs stimulated with calcitonin gene-related peptide (CGRP), a proinflammatory neuropeptide, on the expression of mediators released from DPSCs and the effect of these mediators on sensory neuron activity. Human DPSCs were treated with either control media or media containing CGRP (10−8 M) for 7 d, and the conditioned media (CM) containing DPSC-released mediators was collected. The expression of cytokines and chemokines from DPSCs was evaluated by reverse transcription quantitative polymerase chain reaction. The effects of the CM from CGRP-primed DPSCs (primed DPSC-CM) were evaluated on sensory afferents by using primary cultures of mouse trigeminal neurons and an organotypic model of cultured human pulp slices. Mouse trigeminal neurons and human pulp explants were pretreated for 24 h with control or primed DPSC-CM and then stimulated with capsaicin. Afferent activity was measured by quantifying the response to capsaicin via live cell calcium imaging in mouse neurons and CGRP released from pulp explants. Gene expression analysis showed that primed DPSCs overexpressed some proinflammatory cytokines and chemokines, including chemokines CXCL1 and CXCL8, which are both agonists of the receptor CXCR2 expressed in sensory neurons. Primed DPSC-CM increased human pulp sensory afferent activity as compared with control DPSC-CM. Similarly, primed DPSC-CM increased the intensity of calcium responses in cultured mouse trigeminal neurons. Furthermore, the CXCR2 antagonist SB225002 prevented trigeminal neuron sensitization to capsaicin induced by primed DPSC-CM. In conclusion, mediators released by DPSCs, primed with the proinflammatory mediator CGRP, induce neuronal sensitization through CXCR2 receptor. These data suggest that DPSCs might contribute to pain symptoms that develop in pulpitis.


Sign in / Sign up

Export Citation Format

Share Document