scholarly journals Implementation of internal quality control program for monitoring of enzyme-linked immunosorbent assay performance at a blood center

2021 ◽  
Vol 15 (1) ◽  
pp. 21
Author(s):  
Anju Dubey ◽  
Atul Sonker
2016 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Khushbu Suryaprakash Soni ◽  
Riddhiben Rajendrakumar Patel ◽  
Shailesh Manubhai Patel ◽  
Sarita Jagadishbhai Mangukia

1993 ◽  
Vol 70 (04) ◽  
pp. 588-594 ◽  
Author(s):  
Lloyd E Chambless ◽  
Robert McMahon ◽  
Andrea Finch ◽  
Paul Sorlie ◽  
Gerardo Heiss ◽  
...  

SummaryMethods and results from the quality assurance program of the Atherosclerosis Risk in Communities (ARIC) Study regarding hemostasis variables are presented, following up previous reports in this journal on standardized procedures for blood collection and processing (7) and an organized plan for the performance of those procedures (8). Efforts were made to control for and assess all sources of variability, from venipuncture to laboratory analysis, including also local field center processing and sample shipping. The quality control program included (a) a standardized protocol for blood collection and processing; (b) training, certification, and annual recertification of field center personnel for blood collection and processing; (c) monitoring of fasting times, phlebotomy times, processing times, and shipping problems; (d) hemostatic laboratory internal quality control; (e) a replicate blood sample program; (f) an intraindividual variability study; and (g) continual monitoring of quality control and study participants’ data. This paper focused on items (c), (d), and (e). Measures of Variation, generally Standard deviations and coefficients of Variation, are estimated for replicate blood sampling and internal quality control data, for activated partial thromboplastin time, fibrinogen, factor VII and VIII activity, von Willebrand factor, antithrombin-III, and protein C. The results demonstrate that it is possible to reliably measure these hemostatic variables in a large multicenter study.


Author(s):  
R T P Jansen ◽  
A P Jansen

In a trial of the Netherlands coupled external/internal quality control program a control serum and an enzyme standard were analysed over a period of eight weeks, five times each week. Five enzymes were determined: alkaline phosphatase, creatine kinase, lactate dehydrogenase, alanine aminotransferase, and γ-glutamyltransferase. The measured values in the serum were converted to the standards. Those laboratories using the recommended methods also submitted their non-transformed serum values. The following standardisation techniques have been compared: ( a) no standardisation of methodology but use of enzyme standards; ( b) standardisation of methodology; ( c) standardisation of methodology combined with use of an enzyme standard. Results were submitted to analysis of variance. Standardisation of methodology did not yield smaller interlaboratory variation than the standardisation with enzyme standards. In this trial a combination of both standardisation techniques yielded generally better results. Results for γ-glutamyltransferase indicate that standardisation of substrate may be necessary apart from the use of an enzyme standard. The preparation of stable enzyme standards is stressed.


2013 ◽  
Vol 66 (12) ◽  
pp. 1027-1032 ◽  
Author(s):  
Helen Kinns ◽  
Sarah Pitkin ◽  
David Housley ◽  
Danielle B Freedman

There is a wide variation in laboratory practice with regard to implementation and review of internal quality control (IQC). A poor approach can lead to a spectrum of scenarios from validation of incorrect patient results to over investigation of falsely rejected analytical runs. This article will provide a practical approach for the routine clinical biochemistry laboratory to introduce an efficient quality control system that will optimise error detection and reduce the rate of false rejection. Each stage of the IQC system is considered, from selection of IQC material to selection of IQC rules, and finally the appropriate action to follow when a rejection signal has been obtained. The main objective of IQC is to ensure day-to-day consistency of an analytical process and thus help to determine whether patient results are reliable enough to be released. The required quality and assay performance varies between analytes as does the definition of a clinically significant error. Unfortunately many laboratories currently decide what is clinically significant at the troubleshooting stage. Assay-specific IQC systems will reduce the number of inappropriate sample-run rejections compared with the blanket use of one IQC rule. In practice, only three or four different IQC rules are required for the whole of the routine biochemistry repertoire as assays are assigned into groups based on performance. The tools to categorise performance and assign IQC rules based on that performance are presented. Although significant investment of time and education is required prior to implementation, laboratories have shown that such systems achieve considerable reductions in cost and labour.


1977 ◽  
Author(s):  
C.A. van Dijk-Wierda ◽  
J. Hermans ◽  
E.A. Loeliger ◽  
J. Roos

The 50 laboratories of the Netherlands Federation of Thrombosis Services have participated since 1974 in a voluntary external and internal quality control program. The external program comprises a monthly distribution to the member laboratories of a series of artificially prepared control blood samples, two of which are identical. The overall variation of the coagulation times found were 10% (CV) in 1974 and 8% (CV) in 1975 and 1976. Performance improved rather abruptly at the beginning of 1975, after the application of a tight methodological standardization and improvement by the manufacturer of the thromboplastin preparation (Thrombotest) used by the great majority of the laboratories involved. The main source of variation wasfound to be random error in the Thrombotest determination, approximating 6%. interbatch variation of Thrombotest and inter-aliquot variation of control blood samples both do amount to approximately 3%.


Author(s):  
Jung Keun Choi ◽  
Mi A Son ◽  
Hyun Kyung Kim ◽  
Domyung Paek ◽  
Byung Soon Choi

Sign in / Sign up

Export Citation Format

Share Document