scholarly journals Assessment of stress changes in dentoalveolar and skeletal structures of the mandible with the miniplate anchored Forsus: A three-dimensional finite element stress analysis study

2017 ◽  
Vol 7 ◽  
pp. 87-93
Author(s):  
Harshal Ashok Patil ◽  
Pawankumar Dnyandeo Tekale ◽  
Veerendra V. Kerudi ◽  
Jitendra S. Sharan ◽  
Ratnadip Arunrao Lohakpure ◽  
...  

ObjectiveThe study conducted to assess the effects of a fixed functional appliance (Forsus Fatigue Resistant Device; 3M Unitek, Monrovia, CA, USA) on the mandible with three-dimensional (3D) finite element stress analysis.Materials and MethodsA 3D finite element model of mandible with miniplate at mandibular symphysis was prepared using SolidEdge software along with the plate geometry. The changes were deliberated with the finite element method, in the form of highest von Mises stress and maximum principal stress regions.ResultsMore areas of stress were seen in the model of the mandible at cortical bone in canine region at bone and miniplate interface.ConclusionsThis fixed functional appliance studied by finite element model analysis caused more von Mises stress and principal stress in both the cortical bone and the condylar region.

2014 ◽  
Vol 607 ◽  
pp. 713-716
Author(s):  
Wen Liang Tang ◽  
Chun Yue Huang ◽  
Tian Ming Li ◽  
Ying Liang ◽  
Guo Ji Xiong ◽  
...  

In this paper, ANSYS-LSDYNA simulation software is used to build the three-dimensional finite element model of the ball bond and to get the Von Mises stress. The change of stress about the bump is researched which base on the model in different bonding pressure, bonding power and bonding time. The result show that: The stress increase with bonding pressure increase within a certain bonding pressure range, and then the stress will maintain a table number, however, the stress will continue to increase when the bonding pressure reach a certain value; increasing the bonding power, the area of lager stress will grow; prolonging the bonding time, the stress of the pad will increase with time, but when time increase to a certain value, the stress of the pad will not increase over time.


Author(s):  
Raed E. El-Jawahri ◽  
Jesse S. Ruan ◽  
Stephen W. Rouhana ◽  
Saeed D. Barbat

The Ford Motor Company Human Body Finite Element Model (FHBM) was validated against rib dynamic tension and 3-point bending tests. The stress-strain and moment-strain data from the tension and bending simulations respectively were compared with human rib specimen test data. The model used represented a 50th percentile adult male. It was used to compare chest deflection and chest acceleration as thoracic injury indicator in blunt impact and belted occupants in front sled impact simulations. A 150 mm diameter of 23.4 kg impactor was used in the blunt impact simulations with impact speeds of 2, 4, and 8 m/s. In the Front sled impact simulations, single-step acceleration pulses with peaks of 10, 20, and 30 g were used. The occupants were restrained by 3-point belt system, however neither pretensioner nor shoulder belt force limiter were used. The external force, head acceleration, chest deflection, chest acceleration, and the maximum values of Von Mises stress and plastic strain were the model outputs. The results showed that the external contact force, head acceleration, chest deflection, and chest acceleration in the blunt impact simulations varied between 1.5–7 kN, 5–28 g, 18–80 mm, and 8–40 g respectively. The same responses varied between 7–24 kN, 13–40 g, 15–50 mm, and 16–46 g respectively in the front sled impact simulations. The maximum Von Mises stress and plastic strain were 50–127 MPa, and 0.04–2% respectively in the blunt impact simulations and 72–134 MPa, and 0.13–3% respectively in the sled impact simulations.


2013 ◽  
Vol 405-408 ◽  
pp. 1139-1143
Author(s):  
Wei Su ◽  
Ying Sun ◽  
Shi Qing Huang ◽  
Ren Huai Liu

Using ANSYS parametric design language, a three-dimensional finite element model is developed to analyze the stress distribution and the strength of the mega columns for XRL West Kowloon Terminus. The detailed von Mises stress distribution in each column, vertical stiffener plates and the diaphragm plates is obtained. From the analysis, the phenomenon of stress concentration is obvious in both upper and lower diaphragm plates. The local value of von Mises stress in them is higher than the yield stress value, which must be avoided by more detailed local structural design.


2012 ◽  
Vol 197 ◽  
pp. 93-97 ◽  
Author(s):  
Wen Zhi Zhao ◽  
Hong Jiang ◽  
Sheng Wei He ◽  
Lu Zhang ◽  
Xue Gang Sun

A three-dimensional finite element model is developed to simulate the integrated system which consists of the fractured bone (femur), bone plate and stabilization screw by using the ANSYS software. The stress and strain distribution of the integrated system is investigated. The numerical model simulates a patient’s imperfect walking under the assumption that the fractured bone is not able to support any load and all body weight was burden by bone plate in fractured bone section. The simulation results reveal that the maximum Von Mises stress on bone plate is much less than yield strength and fatigue strength of Titanium alloy.


2020 ◽  
Vol 48 (6) ◽  
pp. 030006052092640
Author(s):  
Hongming Xu ◽  
Jiali Chen ◽  
Shilei Pu ◽  
Xiaoyan Li

This study was performed to investigate the feasibility of using a three-dimensional (3D) finite element model for laryngomalacia severity assessment. We analyzed laryngeal computed tomography images of seven children with laryngomalacia using Mimics software. The gray threshold of different tissues was distinguishable, and a 3D visualization model and finite element model were constructed. The laryngeal structure parameters were defined. The peak von Mises stress (PVMS) value was obtained through laryngeal mechanical analysis. The PVMS values of the laryngeal soft tissue and cartilage scaffolds were independently correlated with disease severity. After stress loading the model, the relationship between laryngomalacia severity and the PVMS value was apparent. However, the PVMS value of laryngeal soft tissue was not correlated with laryngomalacia severity. This study established the efficacy of a finite element model to illustrate the morphological features of the laryngeal cavity in infants with laryngomalacia. However, further study is required before widespread application of 3D finite element modeling of laryngomalacia. PVMS values of the laryngeal cartilage scaffold might be useful for assessment of laryngomalacia severity. These findings support the notion that structural abnormalities of the laryngeal cartilage may manifest as quantifiable changes in stress variants of the supraglottic larynx.


Author(s):  
Yuan-Jian Yang ◽  
Liang Yang ◽  
Hai-Kun Wang ◽  
Shun-Peng Zhu ◽  
Hong-Zhong Huang

AbstractTurbine blades are one of the key components in a typical turbofan engine, which plays an important role in flight safety. In this paper, we establish a establishes a three-dimensional finite element model of the turbine blades, then analyses the strength of the blade in complicated conditions under the joint function of temperature load, centrifugal load, and aerodynamic load. Furthermore, contact analysis of blade tenon and dovetail slot is also carried out to study the stress based on the contact elements. Finally, the Von Mises stress-strain distributions are obtained to acquire the several dangerous points and maximum Von Mises stress, which provide the basis for life prediction of turbine blade.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988526
Author(s):  
Toru Hamasaki ◽  
Masami Iwamoto

Skin deformation caused by contact with an object is transduced into nerve signals by tactile mechanoreceptors, allowing humans to perceive tactile information. Previous research has revealed that the mechanical state associated with finger skin deformation at mechanoreceptor locations in a finite element model is correlated with the experimentally measured responses of slowly adapting type I mechanoreceptors. However, these findings were obtained under static contact conditions. Therefore, in this study, we calculated the von Mises stress at slowly adapting type I and rapidly adapting type I mechanoreceptor locations during dynamic scanning of a textured surface using a finite element model of the human finger. We then estimated the hypothetical responses of the mechanoreceptors and compared the estimated results with the nerve firing of the receptors in previous neurophysiological experiments. These comparisons demonstrated that the temporal history of von Mises stress at mechanoreceptor locations was more strongly correlated with the “number of” impulses (R2 = 0.93 for slowly adapting type I and R2 = 0.90 for rapidly adapting type I) than the impulse “rate” (R2 = 0.58 for slowly adapting type I and R2 = 0.53 for rapidly adapting type I). Our findings suggest that the temporal history of von Mises stress can be used to roughly estimate the number of impulses of mechanoreceptors during scanning of a textured surface.


2020 ◽  
Vol 12 (1) ◽  
pp. 3
Author(s):  
Shuvodeep De ◽  
Karanpreet Singh ◽  
Junhyeon Seo ◽  
Rakesh K. Kapania ◽  
Erik Ostergaard ◽  
...  

The paper describes a fully automated process to generate a shell-based finite element model of a large hybrid truck chassis to perform mass optimization considering multiple load cases and multiple constraints. A truck chassis consists of different parts that could be optimized using shape and size optimization. The cross members are represented by beams, and other components of the truck (batteries, engine, fuel tanks, etc.) are represented by appropriate point masses and are attached to the rail using multiple point constraints to create a mathematical model. Medium-fidelity finite element models are developed for front and rear suspensions and they are attached to the chassis using multiple point constraints, hence creating the finite element model of the complete truck. In the optimization problem, a set of five load conditions, each of which corresponds to a road event, is considered, and constraints are imposed on maximum allowable von Mises stress and the first vertical bending frequency. The structure is optimized by implementing the particle swarm optimization algorithm using parallel processing. A mass reduction of about 13.25% with respect to the baseline model is achieved.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yihua Dou ◽  
Yufei Li ◽  
Yinping Cao ◽  
Yang Yu ◽  
Jiantao Zhang ◽  
...  

PurposeTo maintain the well integrity, the strength and sealing ability of premium connection should be in the safe scope. ISO 13679 is widely used for evaluating the ability of tubing and casing connection all over the world. FE is adopted to simulate the ISO 13679 tests.Design/methodology/approachBecause of the disadvantage of experiment such as long period, high cost and high requirement on the facility, considering the convenience and universality of finite element method, as well as the contacting nonlinearity and material nonlinearity, three-dimensional finite element model of a certain type of premium connection is established with the consideration of helix angle. The loads exerted on the premium connection are the loads in series B test and thermal cycle test of ISO 13679. The distributions of Von Mises stress and contact pressure in various cases were studied.FindingsThe results showed that the bending load has a great influence on the distribution of Von Mises stress and contact pressure for premium connection. The Von Mises stress and contact pressures on the sealing surface are smaller on the tension side and greater on the compression side. With increasing axial compression load, the contact pressures on the tension side are too small, which may lead to sealing failure. The influence of temperature on the performance of premium connection cannot be ignored when choosing or designing premium connections. Both the Von Mises stress and contact pressure decrease slightly during a period of thermal cycle. Although the performance of the premium connection is good in a period of thermal cycle, its performance in a long period should be evaluated. Finite element simulation can effectively simulate the ISO 13679 test procedure and obtain the stress and contact pressure distribution. It can be used as a reference for evaluating the performance of premium connections.Originality/valueConsidering the convenience and universality of finite element method, as well as the contacting nonlinearity and material nonlinearity, three-dimensional finite element model of a certain type of premium connection is established with the consideration of helix angle.


Sign in / Sign up

Export Citation Format

Share Document