scholarly journals Trimester-specific reference intervals for thyroid function parameters in Indian pregnant women during final phase of transition to iodine sufficiency

2020 ◽  
Vol 24 (2) ◽  
pp. 160 ◽  
Author(s):  
Sujoy Ghosh ◽  
Subhadip Pramanik ◽  
Pradip Mukhopadhyay ◽  
Kingshuk Bhattacharjee ◽  
Rana Bhattacharjee ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yonghong Sheng ◽  
Dongping Huang ◽  
Shun Liu ◽  
Xuefeng Guo ◽  
Jiehua Chen ◽  
...  

Ethnic differences in the level of thyroid hormones exist among individuals. The American Thyroid Association (ATA) recommends that an institution or region should establish a specific thyroid hormone reference value for each stage of pregnancy. To date, a limited number of studies have reported the level of thyroid hormones in Chinese minorities, and the exact relationship between BMI and thyroid function in pregnant women is ill. This study was performed to establish trimester-specific reference ranges of thyroid hormones in Zhuang ethnic pregnant women and explore the role of body mass index (BMI) on thyroid function. A total of 3324 Zhuang ethnic health pregnant women were recruited in this Zhuang population-based retrospective cross-sectional study. The values of thyroid stimulating hormone (TSH), free thyroxine (FT4), and free triiodothyronine (FT3) were determined by automatic chemiluminescence immunoassay analyzer. Multivariate linear regression and binary logistic regression were constructed to evaluate the influence of BMI on the thyroid function. The established reference intervals for the serum thyroid hormones in three trimesters were as follows: TSH, 0.02–3.28, 0.03–3.22, and 0.08-3.71 mIU/L; FT4, 10.57–19.76, 10.05–19.23, and 8.96–17.75 pmol/L; FT3, 3.51–5.64, 3.42–5.42, and 2.93–5.03 pmol/L. These values were markedly lower than those provided by the manufacturers for nonpregnant adults which can potentially result in 6.10% to 19.73% misclassification in Zhuang pregnant women. Moreover, BMI was positively correlated with isolated hypothyroxinemia (OR=1.081, 95% CI=1.007–1.161), while the correlation between the BMI and subclinical hypothyroidism was not statistically significant (OR=0.991, 95% CI=0.917–1.072). This is the first study focusing on the reference ranges of thyroid hormones in Guangxi Zhuang ethnic pregnant women, which will improve the care of them in the diagnosis and treatment. We also found that high BMI was positively associated with the risk of isolated hypothyroxinemia.


Author(s):  
Süleyman Akarsu ◽  
Filiz Akbiyik ◽  
Eda Karaismailoglu ◽  
Zeliha Gunnur Dikmen

AbstractThyroid function tests are frequently assessed during pregnancy to evaluate thyroid dysfunction or to monitor pre-existing thyroid disease. However, using non-pregnant reference intervals can lead to misclassification. International guidelines recommended that institutions should calculate their own pregnancy-specific reference intervals for free thyroxine (FT4), free triiodothyronine (FT3) and thyroid-stimulating hormone (TSH). The objective of this study is to establish gestation-specific reference intervals (GRIs) for thyroid function tests in pregnant Turkish women and to compare these with the age-matched non-pregnant women.Serum samples were collected from 220 non-pregnant women (age: 18–48), and 2460 pregnant women (age: 18–45) with 945 (39%) in the first trimester, 1120 (45%) in the second trimester, and 395 (16%) in the third trimester. TSH, FT4 and FT3 were measured using the Abbott Architect i2000SR analyzer.GRIs of TSH, FT4 and FT3 for first trimester pregnancies were 0.49–2.33 mIU/L, 10.30–18.11 pmol/L and 3.80–5.81 pmol/L, respectively. GRIs for second trimester pregnancies were 0.51–3.44 mIU/L, 10.30–18.15 pmol/L and 3.69–5.90 pmol/L. GRIs for third trimester pregnancies were 0.58–4.31 mIU/L, 10.30–17.89 pmol/L and 3.67–5.81 pmol/L. GRIs for TSH, FT4 and FT3 were different from non-pregnant normal reference intervals.TSH levels showed an increasing trend from the first trimester to the third trimester, whereas both FT4 and FT3 levels were uniform throughout gestation. GRIs may help in the diagnosis and appropriate management of thyroid dysfunction during pregnancy which will prevent both maternal and fetal complications.


Author(s):  
Ying Guo ◽  
Bin Wei ◽  
Wei Dai ◽  
Hongjian Xie

Objective A series of physiological changes in thyroid function occur during pregnancy and differ from those non-pregnant women. This study aimed to establish the pregnancy-specific reference intervals of TSH and FT4 using an indirect method based on the healthy pregnant women from southwest China population. Methods Thyroid function test results which available on the Laboratory Information System (LIS) were collected from the pregnancies who visited the Obstetric Clinic or the Department of Gynecology between 1 January 2015, and 30 December 2020. We grouped the data by trimesters to establish the reference intervals (RIs) based on the clinical consensus of different levels of TSH and FT4 at different weeks of gestation. All arrangements were referenced to the document CLSI EP28-A3C. Results A total of 33,040 thyroid function test results of pregnant women, aged 31 (28,33) years were statistical analyzed. Estimated RIs for TSH and FT4 in the first, second and third trimesters corresponding to the 2.5th and 97.5th percentiles in TPOAb negative were 0.02–5.23, 0.03–5.24, 0.37–5.68 mIU/L, 11.66–20.69, 10.1–18.59, 9.85–16.86pmol/L, respectively. Conclusion This study provides trimester-specific RIs for TSH and FT4 among healthy pregnant women in southwest China which guides clinicians to diagnosis and screen for thyroid disorders in this region.


2007 ◽  
Vol 157 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Rt Stricker ◽  
M Echenard ◽  
R Eberhart ◽  
M-C Chevailler ◽  
V Perez ◽  
...  

Background: Maternal thyroid dysfunction has been associated with a variety of adverse pregnancy outcomes. Laboratory measurement of thyroid function plays an important role in the assessment of maternal thyroid health. However, occult thyroid disease and physiologic changes associated with pregnancy can complicate interpretation of maternal thyroid function tests (TFTs). Objective and methods: To 1) establish the prevalence of laboratory evidence for autoimmune thyroid disease (AITD) in pregnant women; 2) establish gestational age-specific reference intervals for TFTs in women without AITD; and 3) examine the influence of reference intervals on the interpretation of TFT in pregnant women. Serum samples were collected from 2272 pregnant women, and TFT performed. Gestational age-specific reference intervals were determined in women without AITD, and then compared with the non-pregnant assay-specific reference intervals for interpretation of testing results. Results: Thyroid peroxidase antibodies (TPO-Ab) and thyroglobulin antibodies (Tg-Ab) were positive in 10.4 and 15.7% of women respectively. TPO-Ab level was related to maternal age, but TPO-Ab status, Tg-Ab status, and Tg-Ab level were not. Women with TSH > 3.0 mIU/l were significantly more likely to be TPO-Ab positive. Gestational age-specific reference intervals for TFT were significantly different from non-pregnant normal reference intervals. Interpretation of TFT in pregnant women using non-pregnant reference intervals could potentially result in misclassification of a significant percentage of results (range: 5.6–18.3%). Conclusion: Laboratory evidence for thyroid dysfunction was common in this population of pregnant women. Accurate classification of TFT in pregnant women requires the use of gestational age-specific reference intervals.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ladan Mehran ◽  
Atieh Amouzegar ◽  
Hossein Delshad ◽  
Sahar Askari ◽  
Mehdi Hedayati ◽  
...  

Background. Due to many physiological changes during pregnancy, interpretation of thyroid function tests needs trimester-specific reference intervals for a specific population. There is no normative data documented for thyroid hormones on healthy pregnant women in Iran. The present survey was conducted to determine trimester-specific reference ranges for serum TSH, thyroxine (TT4), and triiodothyronine (TT3).Methods. The serum of 215 cases was analyzed for measurement of thyroid function tests by immunoassay method of which 152 iodine-sufficient pregnant women without thyroid autoantibodies and history of thyroid disorder or goiter were selected for final analysis. Reference intervals were defined as 5th and 95th percentiles.Results. Reference intervals in the first, second, and third trimesters were as follows: TSH (0.2–3.9, 0.5–4.1, and 0.6–4.1 mIU/l), TT4 (8.2–18.5, 10.1–20.6, and 9–19.4 μg/dl), and TT3 (137.8–278.3, 154.8–327.6, and 137–323.6 ng/dl), respectively. No correlation was found between TSH and TT4 or TT3. Significant correlation was found between TT4 and TT3 in all trimesters (r=0.35,P<0.001).Conclusion. The reference intervals of thyroid function tests in pregnant women differ among trimesters. Applying trimester-specific reference ranges of thyroid hormones is warranted in order to avoid misclassification of thyroid dysfunction during pregnancy.


2016 ◽  
Vol 20 (1) ◽  
pp. 101 ◽  
Author(s):  
Tarun Sekhri ◽  
JuhiAgarwal Juhi ◽  
Reena Wilfred ◽  
RatneshS Kanwar ◽  
Jyoti Sethi ◽  
...  

Author(s):  
Annemiek M.C.P. Joosen ◽  
Ivon J.M. van der Linden ◽  
Neletta de Jong-Aarts ◽  
Marieke A.A. Hermus ◽  
Antonius A.M. Ermens ◽  
...  

AbstractTrimester-specific reference intervals for TSH are recommended to assess thyroid function during pregnancy due to changes in thyroid physiology. Laboratories should verify reference intervals for their population and assay used. No consistent upper reference limit (URL) for TSH during pregnancy is reported in literature. We investigated the use of non-pregnant reference intervals for TSH, recommended during pregnancy by current Dutch guidelines, by deriving trimester-specific reference intervals in disease-free Dutch pregnant women as these are not available.Apparently healthy low risk pregnant women were recruited via midwifery practices. Exclusion criteria included current or past history of thyroid or other endocrine disease, multiple pregnancy, use of medication known to influence thyroid function and current pregnancy as a result of hormonal stimulation. Women who were TPO-antibody positive, miscarried, developed hyperemesis gravidarum, hypertension, pre-eclampsia, HELLP, diabetes or other disease, delivered prematurely or had a small for gestational age neonate were excluded. Blood samples were collected at 9–13 weeks (n=99), 27–29 weeks (n=96) and 36–39 weeks (n=96) of gestation and at 4–13 weeks post-partum (n=95). Sixty women had complete data during pregnancy and post-partum. All analyses were performed on a Roche Cobas e601 analyser.In contrast to current Dutch guidelines, the 97.5th percentiles of TSH in the first (3.39 mIU/L) and second trimesters (3.38 mIU/L) are well under the non-pregnant URL of 4.0 mIU/L. The higher TSH in the third trimester (97.5th percentile 3.85 mIU/L) is close to the current non-pregnant URL of 4.0 mIU/L. Absolute intra-individual TSH is relatively stable during pregnancy and post-partum as individuals tracked within the tertile assigned in trimester 1. Even small deviations within the population reference interval may indicate subtle thyroid dysfunction.


2021 ◽  
Author(s):  
K Aaron Geno ◽  
Matthew S Reed ◽  
Mark A Cervinski ◽  
Robert D Nerenz

Abstract Introduction Automated free thyroxine (FT4) immunoassays are widely available, but professional guidelines discourage their use in pregnant women due to theoretical under-recoveries attributed to increased thyroid hormone binding capacity and instead advocate the use of total T4 (TT4) or free thyroxine index (FTI). The impact of this recommendation on the classification of thyroid status in apparently euthyroid pregnant patients was evaluated. Methods After excluding specimens with thyroid autoantibody concentrations above reference limits, thyroid-stimulating hormone (TSH), FT4, TT4, and T-uptake were measured on the Roche Cobas® platform in remnant clinical specimens from at least 147 nonpregnant women of childbearing age and pregnant women at each trimester. Split-sample comparisons of FT4 as measured by the Cobas and equilibrium dialysis were performed. Results FT4 decreased with advancing gestational age by both immunoassay and equilibrium dialysis. TSH declined during the first trimester, remained constant in the second, and increased throughout the third, peaking just before delivery. Interpretation of TT4 concentrations using 1.5-times the nonpregnant reference interval classified 13.6% of first trimester specimens below the lower reference limit despite TSH concentrations within trimester-specific reference intervals. Five FTI results from 480 pregnant individuals (about 1.0%) fell outside the manufacturer’s reference interval. Conclusions Indirect FT4 immunoassay results interpreted in the context of trimester-specific reference intervals provide a practical and viable alternative to TT4 or FTI. Declining FT4 and increasing TSH concentrations near term suggest that declining FT4 is not an analytical artifact but represents a true physiological change in preparation for labor and delivery.


2018 ◽  
Vol 31 (10) ◽  
pp. 1113-1116 ◽  
Author(s):  
Michelle S. Jayasuriya ◽  
Kay W. Choy ◽  
Lit K. Chin ◽  
James Doery ◽  
Alice Stewart ◽  
...  

Abstract Background: Prompt intervention can prevent permanent adverse neurological effects caused by neonatal hypothyroidism. Thyroid function changes rapidly in the first few days of life but well-defined age-specific reference intervals (RIs) for thyroid-stimulating hormone (TSH), free thyroxine (FT4) and free tri-iodothyronine (FT3) are not available to aid interpretation. We developed hour-based RIs using data mining. Methods: All TSH, FT4 and FT3 results with date and time of collection from neonates aged <7 days during 2005–2015 were extracted from the Monash Pathology database. Neonates with more than one episode of testing or with known primary hypothyroidism, identified by treating physicians or from medical records, were excluded from the analysis. The date and time of birth were obtained from the medical records. Results: Of the 728 neonates qualifying for the study, 569 had time of birth available. All 569 had TSH, 415 had FT4 and 146 had FT3 results. For age ≤24 h, 25–48 h, 49–72 h, 73–96 h, 97–120 h, 121–144 h and 145–168 h of life, the TSH RIs (2.5th–97.5th) (mIU/L) were 4.1–40.2, 3.2–29.6, 2.6–17.3, 2.2–14.7, 1.8–14.2, 1.4–12.7 and 1.0–8.3, respectively; the FT4 RIs (mean ± 2 standard deviation [SD]) (pmol/L) were 15.3–43.6, 14.7–53.2, 16.5–45.5, 17.8–39.4, 15.3–32.1, 14.5–32.6 and 13.9–30.9, respectively; the FT3 RIs (mean±2 SD) (pmol/L) were 5.0–9.4, 4.1–9.1, 2.8–7.8, 2.9–7.8, 3.5–7.2, 3.4–8.0 and 3.8–7.9, respectively. Conclusions: TSH and FT4 were substantially high in the first 24 h after birth followed by a rapid decline over the subsequent 168 h. Use of hour-based RIs in newborns allows for more accurate identification of neonates who are at risk of hypothyroidism.


Sign in / Sign up

Export Citation Format

Share Document