Detection of bacterial DNA in infected body fluids using 16S rRNA gene sequencing: Evaluation as a rapid diagnostic tool

2018 ◽  
Vol 20 (2) ◽  
pp. 92 ◽  
Author(s):  
SR Ramya ◽  
CSheela Devi ◽  
Anand Perumal ◽  
JohnyG Asir ◽  
Reba Kanungo
Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4445
Author(s):  
Lisa F. Stinson ◽  
Michelle L. Trevenen ◽  
Donna T. Geddes

Bacteria in human milk contribute to the establishment of the infant gut microbiome. As such, numerous studies have characterized the human milk microbiome using DNA sequencing technologies, particularly 16S rRNA gene sequencing. However, such methods are not able to differentiate between DNA from viable and non-viable bacteria. The extent to which bacterial DNA detected in human milk represents living, biologically active cells is therefore unclear. Here, we characterized both the viable bacterial content and the total bacterial DNA content (derived from viable and non-viable cells) of fresh human milk (n = 10). In order to differentiate the living from the dead, a combination of propidium monoazide (PMA) and full-length 16S rRNA gene sequencing was used. Our results demonstrate that the majority of OTUs recovered from fresh human milk samples (67.3%) reflected DNA from non-viable organisms. PMA-treated samples differed significantly in their bacterial composition compared to untreated samples (PERMANOVA p < 0.0001). Additionally, an OTU mapping to Cutibacterium acnes had a significantly higher relative abundance in PMA-treated (viable) samples. These results demonstrate that the total bacterial DNA content of human milk is not representative of the viable human milk microbiome. Our findings raise questions about the validity of conclusions drawn from previous studies in which viability testing was not used, and have broad implications for the design of future work in this field.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Lisa Karstens ◽  
Mark Asquith ◽  
Sean Davin ◽  
Damien Fair ◽  
W. Thomas Gregory ◽  
...  

ABSTRACTMicrobial communities are commonly studied using culture-independent methods, such as 16S rRNA gene sequencing. However, one challenge in accurately characterizing microbial communities is exogenous bacterial DNA contamination, particularly in low-microbial-biomass niches. Computational approaches to identify contaminant sequences have been proposed, but their performance has not been independently evaluated. To identify the impact of decreasing microbial biomass on polymicrobial 16S rRNA gene sequencing experiments, we created a mock microbial community dilution series. We evaluated four computational approaches to identify and remove contaminants, as follows: (i) filtering sequences present in a negative control, (ii) filtering sequences based on relative abundance, (iii) identifying sequences that have an inverse correlation with DNA concentration implemented in Decontam, and (iv) predicting the sequence proportion arising from defined contaminant sources implemented in SourceTracker. As expected, the proportion of contaminant bacterial DNA increased with decreasing starting microbial biomass, with 80.1% of the most diluted sample arising from contaminant sequences. Inclusion of contaminant sequences led to overinflated diversity estimates and distorted microbiome composition. All methods for contaminant identification successfully identified some contaminant sequences, which varied depending on the method parameters used and contaminant prevalence. Notably, removing sequences present in a negative control erroneously removed >20% of expected sequences. SourceTracker successfully removed over 98% of contaminants when the experimental environments were well defined. However, SourceTracker misclassified expected sequences and performed poorly when the experimental environment was unknown, failing to remove >97% of contaminants. In contrast, the Decontam frequency method did not remove expected sequences and successfully removed 70 to 90% of the contaminants.IMPORTANCEThe relative scarcity of microbes in low-microbial-biomass environments makes accurate determination of community composition challenging. Identifying and controlling for contaminant bacterial DNA are critical steps in understanding microbial communities from these low-biomass environments. Our study introduces the use of a mock community dilution series as a positive control and evaluates four computational strategies that can identify contaminants in 16S rRNA gene sequencing experiments in order to remove them from downstream analyses. The appropriate computational approach for removing contaminant sequences from an experiment depends on prior knowledge about the microbial environment under investigation and can be evaluated with a dilution series of a mock microbial community.


2018 ◽  
Author(s):  
Lisa Karstens ◽  
Mark Asquith ◽  
Sean Davin ◽  
Damien Fair ◽  
W. Thomas Gregory ◽  
...  

AbstractBackgroundMicrobial communities are commonly studied using culture-independent methods such as 16S rRNA gene sequencing. However, one challenge in accurately characterizing microbial communities is exogenous bacterial DNA contamination. This is particularly problematic for sites of low microbial biomass such as the urinary tract, placenta, and lower airway. Computational approaches have been proposed as a post-processing step to identify and remove potential contaminants, but their performance has not been independently evaluated.To identify the impact of decreasing microbial biomass on polymicrobial 16S rRNA gene sequencing experiments, we used a serial dilution of a mock microbial community. We evaluated two computational approaches to identify and remove contaminants: 1) identifying sequences that have an inverse correlation with DNA concentration implemented in Decontam and 2) predicting the proportion of experimental sample arising from defined contaminant sources implemented in SourceTracker.ResultsAs expected, the proportion of contaminant bacterial DNA increased with decreasing starting microbial biomass, with 79.12% of the most dilute sample arising from contaminant sequences. Inclusion of contaminant sequences in analyses leads to overinflated diversity estimates (up to 12 times greater than the expected values) and distorts microbiome composition. SourceTracker successfully removed over 98% of contaminants when the experimental environments are well defined. However, SourceTracker performed poorly when the experimental environment is unknown, failing to remove the majority of contaminants. Decontam successfully removed 74-91% of contaminants regardless of prior knowledge of the experimental environment.ConclusionsOur study indicates that computational methods can reduce the amount of contaminants in 16S rRNA gene sequencing experiments. The appropriate computational approach for removing contaminant sequences from an experiment depends on the prior knowledge about the microbial environment under investigation and can be evaluated with a dilution series of a mock microbial community.


2019 ◽  
Vol 13 (1) ◽  
pp. 90-101
Author(s):  
Sanju Kumari ◽  
Utkarshini Sharma ◽  
Rohit Krishna ◽  
Kanak Sinha ◽  
Santosh Kumar

Background: Cellulolysis is of considerable economic importance in laundry detergents, textile and pulp and paper industries and in fermentation of biomass into biofuels. Objective: The aim was to screen cellulase producing actinobacteria from the fruit orchard because of its requirement in several chemical reactions. Methods: Strains of actinobacteria were isolated on Sabouraud’s agar medium. Similarities in cultural and biochemical characterization by growing the strains on ISP medium and dissimilarities among them perpetuated to recognise nine groups of actinobacteria. Cellulase activity was measured by the diameter of clear zone around colonies on CMC agar and the amount of reducing sugar liberated from carboxymethyl cellulose in the supernatant of the CMC broth. Further, 16S rRNA gene sequencing and molecular characterization were placed before NCBI for obtaining recognition with accession numbers. Results: Prominent clear zones on spraying Congo Red were found around the cultures of strains of three groups SK703, SK706, SK708 on CMC agar plates. The enzyme assay for carboxymethylcellulase displayed extra cellulase activity in broth: 0.14, 0.82 and 0.66 &#181;mol mL-1 min-1, respectively at optimum conditions of 35°C, pH 7.3 and 96 h of incubation. However, the specific cellulase activities per 1 mg of protein did not differ that way. It was 1.55, 1.71 and 1.83 μmol mL-1 min-1. The growing mycelia possessed short compact chains of 10-20 conidia on aerial branches. These morphological and biochemical characteristics, followed by their verification by Bergey’s Manual, categorically allowed the strains to be placed under actinobacteria. Further, 16S rRNA gene sequencing, molecular characterization and their evolutionary relationship through phylogenetics also confirmed the putative cellulase producing isolates of SK706 and SK708 subgroups to be the strains of Streptomyces. These strains on getting NCBI recognition were christened as Streptomyces glaucescens strain SK91L (KF527284) and Streptomyces rochei strain SK78L (KF515951), respectively. Conclusion: Conclusive evidence on the basis of different parameters established the presence of cellulase producing actinobacteria in the litchi orchard which can convert cellulose into fermentable sugar.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Janis R. Bedarf ◽  
Naiara Beraza ◽  
Hassan Khazneh ◽  
Ezgi Özkurt ◽  
David Baker ◽  
...  

Abstract Background Recent studies suggested the existence of (poly-)microbial infections in human brains. These have been described either as putative pathogens linked to the neuro-inflammatory changes seen in Parkinson’s disease (PD) and Alzheimer’s disease (AD) or as a “brain microbiome” in the context of healthy patients’ brain samples. Methods Using 16S rRNA gene sequencing, we tested the hypothesis that there is a bacterial brain microbiome. We evaluated brain samples from healthy human subjects and individuals suffering from PD (olfactory bulb and pre-frontal cortex), as well as murine brains. In line with state-of-the-art recommendations, we included several negative and positive controls in our analysis and estimated total bacterial biomass by 16S rRNA gene qPCR. Results Amplicon sequencing did detect bacterial signals in both human and murine samples, but estimated bacterial biomass was extremely low in all samples. Stringent reanalyses implied bacterial signals being explained by a combination of exogenous DNA contamination (54.8%) and false positive amplification of host DNA (34.2%, off-target amplicons). Several seemingly brain-enriched microbes in our dataset turned out to be false-positive signals upon closer examination. We identified off-target amplification as a major confounding factor in low-bacterial/high-host-DNA scenarios. These amplified human or mouse DNA sequences were clustered and falsely assigned to bacterial taxa in the majority of tested amplicon sequencing pipelines. Off-target amplicons seemed to be related to the tissue’s sterility and could also be found in independent brain 16S rRNA gene sequences. Conclusions Taxonomic signals obtained from (extremely) low biomass samples by 16S rRNA gene sequencing must be scrutinized closely to exclude the possibility of off-target amplifications, amplicons that can only appear enriched in biological samples, but are sometimes assigned to bacterial taxa. Sequences must be explicitly matched against any possible background genomes present in large quantities (i.e., the host genome). Using close scrutiny in our approach, we find no evidence supporting the hypothetical presence of either a brain microbiome or a bacterial infection in PD brains.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Durazzi ◽  
Claudia Sala ◽  
Gastone Castellani ◽  
Gerardo Manfreda ◽  
Daniel Remondini ◽  
...  

AbstractIn this paper we compared taxonomic results obtained by metataxonomics (16S rRNA gene sequencing) and metagenomics (whole shotgun metagenomic sequencing) to investigate their reliability for bacteria profiling, studying the chicken gut as a model system. The experimental conditions included two compartments of gastrointestinal tracts and two sampling times. We compared the relative abundance distributions obtained with the two sequencing strategies and then tested their capability to distinguish the experimental conditions. The results showed that 16S rRNA gene sequencing detects only part of the gut microbiota community revealed by shotgun sequencing. Specifically, when a sufficient number of reads is available, Shotgun sequencing has more power to identify less abundant taxa than 16S sequencing. Finally, we showed that the less abundant genera detected only by shotgun sequencing are biologically meaningful, being able to discriminate between the experimental conditions as much as the more abundant genera detected by both sequencing strategies.


Sign in / Sign up

Export Citation Format

Share Document