scholarly journals Application of Magnetic Coconut Shell-derived Biocarbon for Methylene Blue Removal

Author(s):  
Nor Abdullah ◽  
Palsan Abdullah ◽  
Mohamad Mohd Amin ◽  
Nor Zainol
2021 ◽  
Vol 17 (6) ◽  
pp. 768-775
Author(s):  
Fadina Amran ◽  
Nur Fatiah Zainuddin ◽  
Muhammad Abbas Ahmad Zaini

The present work was aimed at evaluating the performance of two-stage adsorber for methylene blue removal by coconut shell activated carbon in minimizing the adsorbent mass and contact time. The Langmuir constants were used to evaluate the optimum mass, while the pseudo-second-order constants for contact time. Results show that the adsorbent mass can only be minimized by 0.01 % due to the high adsorbent affinity towards methylene blue, while the contact time has been optimized to 12.2 min at the studied conditions. The effect of adsorbent affinity in two-stage adsorber was analyzed to shed some light about its importance in the design of two-stage adsorber. The performance evaluation was also discussed to bring insight into wastewater treatment applications.


2020 ◽  
Vol 82 (5) ◽  
Author(s):  
Dwi Nuryana ◽  
Muhammad Fahrul Rahman Alim ◽  
Maizatulakmal Yahayu ◽  
Muhammad Abbas Ahmad ◽  
Raja Safazliana Raja Sulong ◽  
...  

Indonesia is the world’s second largest producer of coconut. This at the same time resulted in huge generation of coconut shell waste that need to be properly managed to prevent environmental contamination such as water, air and soil pollution. Current techniques of physical and thermal processing are time and energy consuming. This study reports on the conversion of coconut shell biomass into biochar using microwave-assisted pyrolysis (MAP). The MAP processes were carried out at different microwave power (550-650W) and   residence time (15-25 minutes). Two of the highest biochar yields were obtained at 550W with the residence times of 15 minutes (91.31 wt%, termed as S1) and 20 minutes (83.88 wt%, termed as S2), respectively. Both values were higher than biochar yield obtained using conventional pyrolysis process i.e. 30.10 wt%. Both S1 and S2 showed considerable capacity to remove 0.6875 mg.g-1 and 0.5165 mg.g-1 methylene blue which had the initial concentration of 25 mg.L-1. The adsorption efficiencies of S1 and S2 biochars were 55.00% and 41.32%, respectively. Results obtained from the FTIR, FESEM and BET analysis also supported the methylene blue removal properties of both S1 and S2, respectively. As a conclusion, coconut shell showed potential as a useful raw material to produce biochar that can be used for methylene blue removal from solution. Nevertheless, more investigation need to be carried out prior to commercialization venture of the coconut-shell based biochar.


2021 ◽  
Vol 117 ◽  
pp. 111116
Author(s):  
Mohamed Amine Bezzerrouk ◽  
Mohamed Bousmaha ◽  
Madani Hassan ◽  
Ahmed Akriche ◽  
Bachir Kharroubi ◽  
...  

2021 ◽  
Author(s):  
Lana S. Maia ◽  
Letícia D. Duizit ◽  
Fernanda R. Pinhatio ◽  
Daniella R. Mulinari

Sign in / Sign up

Export Citation Format

Share Document