scholarly journals Neutron Flux Parameter for In-Vivo testing Boron Neutron Capture Therapy (BNCT) on Radial Piercing Beam Port Kartini Nuclear Reactor by Monte Carlo N-Particle Extended (MCNPX) Simulation Method

Author(s):  
Ikna Wusko ◽  
Nur Hidayah
2018 ◽  
Vol 3 (1) ◽  
pp. 29-35
Author(s):  
Yohannes Sardjono ◽  
Kusminarto Kusminarto ◽  
Ikna Urwatul Wusko

Boron Neutron Capture Therapy (BNCT) on radial piercing beam port Kartini nuclear reactor by MCNPX simulation method has been done in the National Nuclear Energy Agency Yogyakarta. BNCT is a type of therapy alternative that uses nuclear reaction 10B (n, α) 7Li to produce 2.79 MeV total kinetic energy. To be eligible IAEA conducted a study of design improvements and variations on some parameters to optimum condition which are Ni-nat thickness of 1.75 cm as collimator wall, Al2S3 as thick as 29 cm as moderator, Al2O3 0.5 cm thick as filter, Pb and Bi thickness of 4 cm as the end of the gamma shield collimators and Bi thickness of 1.5 cm as the base gamma shield collimators. The total dose was accepted in the tumor tissue 900 × 10-4 Gy/s. Radiation dose on the tumor tissue is 50±3 Gy with time irradiation of 9 minutes and 10 seconds. That dose was given into skin tissue and healthy liver tissue consecutively (6.00±0.05) × 10-2 Gy and (10.00±0.05) × 10-2 Gy. It shows the dose received by healthy tissue is still within safe limits.


2018 ◽  
Vol 35 (3) ◽  
pp. 213-216
Author(s):  
Atika Maysaroh ◽  
Kusminarto Kusminarto ◽  
Dwi Satya Palupi ◽  
Yohannes Sardjono

Cancer is one of the leading causes of death globally, with lung cancer being among the most prevalent. Boron Neutron Capture Therapy (BNCT) is a cancer therapy method that uses the interaction between thermal neutrons and boron-10 which produces a decaying boron-11 particle and emits alpha, lithium 7 and gamma particles. A study was carried out to model an in vivo experiment of rat organisms that have lung cancer. Dimensions of a rat’s body were used in Konijnenberg research. Modeling lung cancer type, non-small cell lung cancer, was used in Monte Carlo N Particle-X. Lung cancer was modeled with a spherical geometry consisting of 3 dimensions: PTV, GTV, and CTV. In this case, the neutron source was from the radial piercing beam port of Kartini Reactor, Yogyakarta. The variation of boron concentration was 20, 25, 30, 35, 40, and 40 µg/g cancer. The output of the MCNP calculation was neutron scattering dose, gamma-ray dose and neutron flux from the reactor. A neutron flux was used to calculate the alpha proton and gamma-ray dose from the interaction of tissue material and thermal neutrons. The total dose was calculated from a four-dose component in BNCT. The results showed that the dose rate will increase when the boron concentration is higher, whereas irradiating time will decrease.


2016 ◽  
Vol 1 (3) ◽  
pp. 151
Author(s):  
Agung Prastowo ◽  
Yohannes Sardjono ◽  
Widarto Widarto

A study of voxel mice model of MCNPX has been done for in vivo test Boron Neutron Capture Therapy (BNCT). Mathematical and parameters were used to construct the stylized Mice model phantom. The geometry was modified into simulation software MCNPX (Monte Carlo N-Particle eXtended) simulation input. The result of mice stylized model phantom has been showed Figure 3.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Naonori Hu ◽  
Hiroki Tanaka ◽  
Ryo Kakino ◽  
Syuushi Yoshikawa ◽  
Mamoru Miyao ◽  
...  

AbstractBoron neutron capture therapy (BNCT) for the treatment of unresectable, locally advanced, and recurrent carcinoma of the head and neck cancer has been approved by the Japanese government for reimbursement under the national health insurance as of June 2020. A new treatment planning system for clinical BNCT has been developed by Sumitomo Heavy Industries, Ltd. (Sumitomo), NeuCure® Dose Engine. To safely implement this system for clinical use, the simulated neutron flux and gamma ray dose rate inside a water phantom was compared against experimental measurements. Furthermore, to validate and verify the new planning system, the dose distribution inside an anthropomorphic head phantom was compared against a BNCT treatment planning system SERA and an in-house developed Monte Carlo dose calculation program. The simulated results closely matched the experimental results, within 5% for the thermal neutron flux and 10% for the gamma ray dose rate. The dose distribution inside the head phantom closely matched with SERA and the in-house developed dose calculation program, within 3% for the tumour and a difference of 0.3 Gyw for the brain.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3609 ◽  
Author(s):  
Pulagam ◽  
Gona ◽  
Gómez-Vallejo ◽  
Meijer ◽  
Zilberfain ◽  
...  

Background: Boron Neutron Capture Therapy (BNCT) is a binary approach to cancer therapy that requires accumulation of boron atoms preferentially in tumour cells. This can be achieved by using nanoparticles as boron carriers and taking advantage of the enhanced permeability and retention (EPR) effect. Here, we present the preparation and characterization of size and shape-tuned gold NPs (AuNPs) stabilised with polyethylene glycol (PEG) and functionalized with the boron-rich anion cobalt bis(dicarbollide), commonly known as COSAN. The resulting NPs were radiolabelled with 124I both at the core and the shell, and were evaluated in vivo in a mouse model of human fibrosarcoma (HT1080 cells) using positron emission tomography (PET). Methods: The thiolated COSAN derivatives for subsequent attachment to the gold surface were synthesized by reaction of COSAN with tetrahydropyran (THP) followed by ring opening using potassium thioacetate (KSAc). Iodination on one of the boron atoms of the cluster was also carried out to enable subsequent radiolabelling of the boron cage. AuNPs grafted with mPEG-SH (5 Kda) and thiolated COSAN were prepared by ligand displacement. Radiolabelling was carried out both at the shell (isotopic exchange) and at the core (anionic absorption) of the NPs using 124I to enable PET imaging. Results: Stable gold nanoparticles simultaneously functionalised with PEG and COSAN (PEG-AuNPs@[4]−) with hydrodynamic diameter of 37.8 ± 0.5 nm, core diameter of 19.2 ± 1.4 nm and ξ-potential of −18.0 ± 0.7 mV were obtained. The presence of the COSAN on the surface of the NPs was confirmed by Raman Spectroscopy and UV-Vis spectrophotometry. PEG-AuNPs@[4]− could be efficiently labelled with 124I both at the core and the shell. Biodistribution studies in a xenograft mouse model of human fibrosarcoma showed major accumulation in liver, lungs and spleen, and poor accumulation in the tumour. The dual labelling approach confirmed the in vivo stability of the PEG-AuNPs@[4]−. Conclusions: PEG stabilized, COSAN-functionalised AuNPs could be synthesized, radiolabelled and evaluated in vivo using PET. The low tumour accumulation in the animal model assayed points to the need of tuning the size and geometry of the gold core for future studies.


Sign in / Sign up

Export Citation Format

Share Document