scholarly journals Review of Machine learning models for Crop Yield Prediction

Author(s):  
Aravind T
2021 ◽  
Author(s):  
Amit Kumar Srivast ◽  
Nima Safaei ◽  
Saeed Khaki ◽  
Gina Lopez ◽  
Wenzhi Zeng ◽  
...  

Abstract Crop yield forecasting depends on many interactive factors including crop genotype, weather, soil, and management practices. This study analyzes the performance of machine learning and deep learning methods for winter wheat yield prediction using extensive datasets of weather, soil, and crop phenology. We propose a convolutional neural network (CNN) which uses the 1-dimentional convolution operation to capture the time dependencies of environmental variables. The proposed CNN, evaluated along with other machine learning models for winter wheat yield prediction in Germany, outperformed all other models tested. To address the seasonality, weekly features were used that explicitly take soil moisture and meteorological events into account. Our results indicated that nonlinear models such as deep learning models and XGboost are more effective in finding the functional relationship between the crop yield and input data compared to linear models and deep neural networks had a higher prediction accuracy than XGboost. One of the main limitations of machine learning models is their black box property. Therefore, we moved beyond prediction and performed feature selection, as it provides key results towards explaining yield prediction (variable importance by time). As such, our study indicates which variables have the most significant effect on winter wheat yield.


2021 ◽  
Vol 13 (16) ◽  
pp. 3322
Author(s):  
Dan Li ◽  
Yuxin Miao ◽  
Sanjay K. Gupta ◽  
Carl J. Rosen ◽  
Fei Yuan ◽  
...  

Accurate high-resolution yield maps are essential for identifying spatial yield variability patterns, determining key factors influencing yield variability, and providing site-specific management insights in precision agriculture. Cultivar differences can significantly influence potato (Solanum tuberosum L.) tuber yield prediction using remote sensing technologies. The objective of this study was to improve potato yield prediction using unmanned aerial vehicle (UAV) remote sensing by incorporating cultivar information with machine learning methods. Small plot experiments involving different cultivars and nitrogen (N) rates were conducted in 2018 and 2019. UAV-based multi-spectral images were collected throughout the growing season. Machine learning models, i.e., random forest regression (RFR) and support vector regression (SVR), were used to combine different vegetation indices with cultivar information. It was found that UAV-based spectral data from the early growing season at the tuber initiation stage (late June) were more correlated with potato marketable yield than the spectral data from the later growing season at the tuber maturation stage. However, the best performing vegetation indices and the best timing for potato yield prediction varied with cultivars. The performance of the RFR and SVR models using only remote sensing data was unsatisfactory (R2 = 0.48–0.51 for validation) but was significantly improved when cultivar information was incorporated (R2 = 0.75–0.79 for validation). It is concluded that combining high spatial-resolution UAV images and cultivar information using machine learning algorithms can significantly improve potato yield prediction than methods without using cultivar information. More studies are needed to improve potato yield prediction using more detailed cultivar information, soil and landscape variables, and management information, as well as more advanced machine learning models.


2020 ◽  
Author(s):  
Ritvik Sahajpal ◽  
Lucas Fontana ◽  
Pedro Lafluf ◽  
Guillermo Leale ◽  
Estefania Puricelli ◽  
...  

2021 ◽  
Author(s):  
Hampus Gummesson Svensson ◽  
Simon Viet Johansson ◽  
Esben Bjerrum ◽  
Alexander Schliep ◽  
Morteza Haghir Chehreghani ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiyu Zhou ◽  
Douglas J. Soldat

Nitrogen is the most limiting nutrient for turfgrass growth. Instead of pursuing the maximum yield, most turfgrass managers use nitrogen (N) to maintain a sub-maximal growth rate. Few tools or soil tests exist to help managers guide N fertilizer decisions. Turf growth prediction models have the potential to be useful, but the currently existing turf growth prediction model only takes temperature into account, limiting its accuracy. This study developed machine-learning-based turf growth models using the random forest (RF) algorithm to estimate short-term turfgrass clipping yield. To build the RF model, a large set of variables were extracted as predictors including the 7-day weather, traffic intensity, soil moisture content, N fertilization rate, and the normalized difference red edge (NDRE) vegetation index. In this study, the data were collected from two putting greens where the turfgrass received 0 to 1,800 round/week traffic rates, various irrigation rates to maintain the soil moisture content between 9 and 29%, and N fertilization rates of 0 to 17.5 kg ha–1 applied biweekly. The RF model agreed with the actual clipping yield collected from the experimental results. The temperature and relative humidity were the most important weather factors. Including NDRE improved the prediction accuracy of the model. The highest coefficient of determination (R2) of the RF model was 0.64 for the training dataset and was 0.47 for the testing data set upon the evaluation of the model. This represented a large improvement over the existing growth prediction model (R2 = 0.01). However, the machine-learning models created were not able to accurately predict the clipping production at other locations. Individual golf courses can create customized growth prediction models using clipping volume to eliminate the deviation caused by temporal and spatial variability. Overall, this study demonstrated the feasibility of creating machine-learning-based yield prediction models that may be able to guide N fertilization decisions on golf course putting greens and presumably other turfgrass areas.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


Sign in / Sign up

Export Citation Format

Share Document