scholarly journals Maximum Service Rate of Two Interacting Queues with Delay Constraint

Author(s):  
Rubem Bergamo ◽  
Paulo Cardieri
2010 ◽  
Author(s):  
Sheu-Sheu Tan ◽  
Dong Zheng ◽  
Junsham Zhang ◽  
James Zeidler

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ekaterina Evdokimova ◽  
Sabine Wittevrongel ◽  
Dieter Fiems

This paper investigates the performance of a queueing model with multiple finite queues and a single server. Departures from the queues are synchronised or coupled which means that a service completion leads to a departure in every queue and that service is temporarily interrupted whenever any of the queues is empty. We focus on the numerical analysis of this queueing model in a Markovian setting: the arrivals in the different queues constitute Poisson processes and the service times are exponentially distributed. Taking into account the state space explosion problem associated with multidimensional Markov processes, we calculate the terms in the series expansion in the service rate of the stationary distribution of the Markov chain as well as various performance measures when the system is (i) overloaded and (ii) under intermediate load. Our numerical results reveal that, by calculating the series expansions of performance measures around a few service rates, we get accurate estimates of various performance measures once the load is above 40% to 50%.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Ujjwal ◽  
Jaisingh Thangaraj

Abstract In this paper, an algorithm for multipath connection provisioning in elastic optical network (EON) has been proposed. Initially, the algorithm prefers the single-path routing for service provisioning. But when single-path routing is not adequate to serve a dynamic connection, the algorithm switches to the connection request fragmentation. Its computation is based on the parameters such as capacity_constant and capacity_allowed to fragment the connection request on disjoint paths. Simulation results clearly state that the proposed algorithm performs well in service provisioning as compared to the traditional single-path routing algorithms and improves the average network throughput. Thereafter, we have investigated the limitation of Erlang B traffic model in EON for calculation of link blocking probability using routing and spectrum assignment (RSA) algorithm. It is verified by the following two ways: (i) effect on the blocking probability in case of constant load and (ii) effect of slot width on the blocking probability. Our simulation results indicate that in EON due to dynamic RSA, blocking probability is not constant in case of proportionate varying of call arrival and service rate giving constant load and blocking probability depends on the number of slots per link, but in Erlang B traffic model blocking probability is always constant in case of constant load and it considers wavelength per link instead of slots per link. This is attributed to the fact that Erlang B traffic model fails to calculate blocking probability accurately in EON. We have computed the carried traffic on 14 nodes, 21-link National Science Foundation Network (NSFNET) topology.


2020 ◽  
Vol 52 (2) ◽  
pp. 463-490
Author(s):  
Seva Shneer ◽  
Alexander Stolyar

AbstractWe study networks of interacting queues governed by utility-maximising service-rate allocations in both discrete and continuous time. For finite networks we establish stability and some steady-state moment bounds under natural conditions and rather weak assumptions on utility functions. These results are obtained using direct applications of Lyapunov–Foster-type criteria, and apply to a wide class of systems, including those for which fluid-limit-based approaches are not applicable. We then establish stability and some steady-state moment bounds for two classes of infinite networks, with single-hop and multi-hop message routes. These results are proved by considering the infinite systems as limits of their truncated finite versions. The uniform moment bounds for the finite networks play a key role in these limit transitions.


2003 ◽  
Vol 35 (03) ◽  
pp. 793-805 ◽  
Author(s):  
Sem Borst ◽  
Bert Zwart

We determine the exact large-buffer asymptotics for a mixture of light-tailed and heavy-tailed input flows. Earlier studies have found a ‘reduced-load equivalence’ in situations where the peak rate of the heavy-tailed flows plus the mean rate of the light-tailed flows is larger than the service rate. In that case, the workload is asymptotically equivalent to that in a reduced system, which consists of a certain ‘dominant’ subset of the heavy-tailed flows, with the service rate reduced by the mean rate of all other flows. In the present paper, we focus on the opposite case where the peak rate of the heavy-tailed flows plus the mean rate of the light-tailed flows is smaller than the service rate. Under mild assumptions, we prove that the workload distribution is asymptotically equivalent to that in a somewhat ‘dual’ reduced system, multiplied by a certain prefactor. The reduced system now consists of only the light-tailed flows, with the service rate reduced by the peak rate of the heavy-tailed flows. The prefactor represents the probability that the heavy-tailed flows have sent at their peak rate for more than a certain amount of time, which may be interpreted as the ‘time to overflow’ for the light-tailed flows in the reduced system. The results provide crucial insight into the typical overflow scenario.


2013 ◽  
Vol 427-429 ◽  
pp. 2237-2244
Author(s):  
Jie Li ◽  
Xing Wei Wang ◽  
Min Huang

Survivability is an important concern in the optical network. In order to offer an effective and efficient protection mechanism that meeting both delay constraint and availability guarantees for real-time services in the optical network, a shared path protection mechanism based on delay constraint is proposed in this paper. Thinking of the processing delay and the propagation delay as main factors which have great effect on the delay of real-time services, the mechanism designs the routing and wavelength assignment schemes for the working path and the protection path. Simulation results show that the proposed mechanism is both feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document