On the Conduct of Systematic Reviews: Using Demineralized Bone Matrix to Augment Tendon–Bone Healing as a Case Study

2020 ◽  
Author(s):  
Callum Donaldson ◽  
Adam Hexter
Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3120
Author(s):  
Nicolas Söhling ◽  
Maximilian Leiblein ◽  
Alexander Schaible ◽  
Maren Janko ◽  
Joachim Schwäble ◽  
...  

Treatment of large bone defects is one of the great challenges in contemporary orthopedic and traumatic surgery. Grafts are necessary to support bone healing. A well-established allograft is demineralized bone matrix (DBM) prepared from donated human bone tissue. In this study, a fibrous demineralized bone matrix (f-DBM) with a high surface-to-volume ratio has been analyzed for toxicity and immunogenicity. f-DBM was transplanted to a 5-mm, plate-stabilized, femoral critical-size-bone-defect in Sprague-Dawley (SD)-rats. Healthy animals were used as controls. After two months histology, hematological analyses, immunogenicity as well as serum biochemistry were performed. Evaluation of free radical release and hematological and biochemical analyses showed no significant differences between the control group and recipients of f-DBM. Histologically, there was no evidence of damage to liver and kidney and good bone healing was observed in the f-DBM group. Reactivity against human HLA class I and class II antigens was detected with mostly low fluorescence values both in the serum of untreated and treated animals, reflecting rather a background reaction. Taken together, these results provide evidence for no systemic toxicity and the first proof of no basic immunogenic reaction to bone allograft and no sensitization of the recipient.


2005 ◽  
Vol 44 (5) ◽  
pp. 345-353 ◽  
Author(s):  
William S. Pietrzak ◽  
Stephen V. Perns ◽  
Joshua Keyes ◽  
Jennifer Woodell-May ◽  
Nicholas M. McDonald

2006 ◽  
Vol 30 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Ali Öztürk ◽  
H. Yetkin ◽  
L. Memis ◽  
E. Cila ◽  
S. Bolukbasi ◽  
...  

2012 ◽  
Vol 40 (10) ◽  
pp. 2365-2374 ◽  
Author(s):  
Vedran Lovric ◽  
Dong Chen ◽  
Yan Yu ◽  
Rema A. Oliver ◽  
Francois Genin ◽  
...  

2000 ◽  
Vol 29 (3) ◽  
pp. 218-226 ◽  
Author(s):  
Christopher E. Kawcak ◽  
Gayle W. Trotter ◽  
Barbara E. Powers ◽  
Richard D. Park ◽  
A. Simon Turner

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1249
Author(s):  
René D. Verboket ◽  
Tanja Irrle ◽  
Yannic Busche ◽  
Alexander Schaible ◽  
Katrin Schröder ◽  
...  

Regeneration of large bone defects is a major objective in trauma surgery. Bone marrow mononuclear cell (BMC)-supported bone healing was shown to be efficient after immobilization on a scaffold. We hypothesized that fibrous demineralized bone matrix (DBM) in various forms with BMCs is superior to granular DBM. A total of 65 male SD rats were assigned to five treatment groups: syngenic cancellous bone (SCB), fibrous demineralized bone matrix (f-DBM), fibrous demineralized bone matrix densely packed (f-DBM 120%), DBM granules (GDBM) and DBM granules 5% calcium phosphate (GDBM5%Ca2+). BMCs from donor rats were combined with different scaffolds and placed into 5 mm femoral bone defects. After 8 weeks, bone mineral density (BMD), biomechanical stability and histology were assessed. Similar biomechanical properties of f-DBM and SCB defects were observed. Similar bone and cartilage formation was found in all groups, but a significantly bigger residual defect size was found in GDBM. High bone healing scores were found in f-DBM (25) and SCB (25). The application of DBM in fiber form combined with the application of BMCs shows promising results comparable to the gold standard, syngenic cancellous bone. Denser packing of fibers or higher amount of calcium phosphate has no positive effect.


Sign in / Sign up

Export Citation Format

Share Document