scholarly journals The Curve Representing Electrical Double Layer Capacity against Electrode Potential of Fe-HClO4 System Containing Organic Acids

1967 ◽  
Vol 18 (11) ◽  
pp. 422-425
Author(s):  
Takao MURAKAWA ◽  
Toshiharu KATO
1989 ◽  
Vol 261 (2) ◽  
pp. 273-286 ◽  
Author(s):  
W.H. Mulder ◽  
J.H. Sluyters ◽  
J.H. van Lenthe

2010 ◽  
Vol 25 (8) ◽  
pp. 1617-1628 ◽  
Author(s):  
Stanisław Biniak ◽  
Maciej Pakuła ◽  
Andrzej Świątkowski ◽  
Michał Bystrzejewski ◽  
Stanisław Błażewicz

Activated carbon Norit R3-ex (demineralized) was annealed at various temperatures (950–2700 °C) in an argon atmosphere. The changes of the porosity of the products were characterized on the basis of N2 adsorption isotherms (at 77 K). The texture of the samples was investigated by x-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The presence of surface oxygen (Fourier transform infrared) and its content in the surface layer (from energy dispersive spectroscopy) were determined. The electrical resistivity of powdered samples was measured. Cyclovoltammetry of carbon (powdered electrodes) were carried out and the electrical double-layer capacitances were estimated from the cyclic voltammetry curves. Heat treatment increased the degree of crystallization of the samples, which was correlated with changes in their conductivity. A rapid drop in porosity (at 1800–2100 °C) took place in parallel with a decrease in the electrical double layer capacity. The presence of surface oxygen as a result of oxygen chemisorption on freshly annealed carbon samples was confirmed using several methods.


2019 ◽  
Author(s):  
Divya Bohra ◽  
Jehanzeb Chaudhry ◽  
Thomas Burdyny ◽  
Evgeny Pidko ◽  
wilson smith

<p>The environment of a CO<sub>2</sub> electroreduction (CO<sub>2</sub>ER) catalyst is intimately coupled with the surface reaction energetics and is therefore a critical aspect of the overall system performance. The immediate reaction environment of the electrocatalyst constitutes the electrical double layer (EDL) which extends a few nanometers into the electrolyte and screens the surface charge density. In this study, we resolve the species concentrations and potential profiles in the EDL of a CO<sub>2</sub>ER system by self-consistently solving the migration, diffusion and reaction phenomena using the generalized modified Poisson-Nernst-Planck (GMPNP) equations which include the effect of volume exclusion due to the solvated size of solution species. We demonstrate that the concentration of solvated cations builds at the outer Helmholtz plane (OHP) with increasing applied potential until the steric limit is reached. The formation of the EDL is expected to have important consequences for the transport of the CO<sub>2</sub> molecule to the catalyst surface. The electric field in the EDL diminishes the pH in the first 5 nm from the OHP, with an accumulation of protons and a concomitant depletion of hydroxide ions. This is a considerable departure from the results obtained using reaction-diffusion models where migration is ignored. Finally, we use the GMPNP model to compare the nature of the EDL for different alkali metal cations to show the effect of solvated size and polarization of water on the resultant electric field. Our results establish the significance of the EDL and electrostatic forces in defining the local reaction environment of CO<sub>2</sub> electrocatalysts.</p>


2021 ◽  
pp. 138416
Author(s):  
Sofia B. Davey ◽  
Amanda P. Cameron ◽  
Kenneth G. Latham ◽  
Scott W. Donne

2018 ◽  
Vol 782 ◽  
pp. 21-26
Author(s):  
Takeshi Yabutsuka ◽  
Masaya Yamamoto ◽  
Shigeomi Takai ◽  
Takeshi Yao

We prepared hydroxyapatite (HA) capsules encapsulating maghemite particles. In order to evaluate enzyme immobilization behavior of the HA capsules under alkaline condition, we immobilized five kinds of enzymes with different isoelectric point in carbonate/bicarbonate buffer (CBB, pH 10.0). When the enzymes in CBB were moderately charged, immobilization efficiency on the HA capsules showed the highest value. It was suggested that immobilization efficiency was affected according to both pI of enzyme and pH of the surrounding solution and that enzyme immobilized on the HA capsules by not only electrical double layer interactions but also ion interaction and other interactions.


Sign in / Sign up

Export Citation Format

Share Document