Calibration and validation of the Modified Universal Soil Loss Equation for estimating sediment yield on sloping plots: A case study in Khun Satan catchment of Northern Thailand

2010 ◽  
Vol 90 (4) ◽  
pp. 585-596 ◽  
Author(s):  
S. Pongsai ◽  
D. Schmidt Vogt ◽  
R.P. Shrestha ◽  
R.S. Clemente ◽  
A. Eiumnoh

In this study, model testing, calibration, and validation of the Modified Universal Soil Loss Equation (MUSLE) model were carried out in Khun Satan catchment, Thailand, for the estimation of sediment yield in plots of different slopes using the S factor from the classic Universal Soil Loss Equation (USLE) and the McCool model, as the calibration parameter. In situ experimental plots were established with five different inclinations (9, 16, 25, 30, and 35%), with the other model parameters (e.g., erodibility, conservation practice, etc) being treated as constants. Sediment yields were recorded from 27 rainfall events between July and October 2003. It was found that both the classic USLE and the McCool models over-estimated sediment yields at all slope angles. However, the classic USLE produced a smaller relative error (RE) than the McCool model at plots with slopes of 9 and 16%, while the McCool model performed better at plots with slopes over 16% inclination. The calibration of the model using the S factor was then made for two slope range intervals, and the slope algorithm was later modified. The calibrated S factors were used in the prototype model for slope ranges of 9 to 16% using classic USLE and for slopes from 16 to 35% using the McCool model. The results revealed that an acceptable accuracy can be obtained through model calibration. The model validation based on paired t-test, on the other hand, showed that there was no difference (α = 0.05) between measured and estimated sediment yield using both models. This result indicates that if data on various slope gradients are limited, MUSLE needs to be calibrated before application, especially with respect to topographic factors, in order to obtain an accurate estimate of the sediment yield from individual rainfall events.

2011 ◽  
Vol 2 (2) ◽  
pp. 23-34
Author(s):  
Oon Y.W. ◽  
Chin N.J. ◽  
Law P.L.

 This research presents the results of a study on soil erosion rates and sediment yields of a proposed Level 4 Sanitary Landfill construction site located in Sibu, Sarawak. Assessments on potential soil erosion rates and sediment yields during pre-construction, construction and operation stages were carried out using the Revised Universal Soil Loss Equation (RUSLE) and Modified Universal Soil Loss Equation (MUSLE), respectively. It was found that soil erosion rates during construction and operation stages fell under "Moderately High" category, whereby highest sediment yield occurred during construction and operation stages. Comparative analysis on with and without Best Management Practices (BMPs) during construction stage demonstrated that BMPs could significantly reduce the rate of soil erosion, and thus sediment yields.


2019 ◽  
Vol 7 (2) ◽  
pp. 100-111
Author(s):  
Miskar Maini ◽  
Junita Eka Susanti

Standar permintaan engineering pesawat agar desain bangunan infrastruktur di area Air Strip Runway 2600 yang ada dapat mempunyai fungsi lain. Sedangkan kondisi lain sangat menentukan keselamatan karena lahan di sekitar Air Strip Runway 2600 Bandara Depati Amir (PGK) jika tidak ditutupi vegetasi seperti rumput, kondisi lain lahan yang belum ditutupi vegetasi di sekitar Air Strip Runway 2600 berpotensi akan mengalami erosi lahan, kemudian hasil erosi lahan ini akan terbawa oleh aliran air sehingga akan masuk ke saluran drainase yang akan menyebabkan sedimentasi pada saluran drainase tersebut, akhirnya akan berkurang efektifitas kinerja saluran drainase tersebut. Metode yang digunakan untuk memprediksi laju rata-rata erosi di area Air Strip Runway 2600 dengan memperhitungkan faktor erosivitas hujan, erodibilitas tanah, kemiringan lereng atau panjang lereng, pengelolaan tanaman dan konservasi tanah, yang masing masing tata guna lahan tersebut mengacu pada Masterplan Ultimate Bandara Depati Amir (PGK). Perhitungan dilakukan menggunakan persamaan USLE (Universal Soil Loss Equation) yang dikembangkan oleh Wischmeier dan Smith (1965, 1978), kemudian Sediment Delivery Ratio (SDR) dan Sediment Yield.Hasil penelitian ini, prediksi laju erosi permukaan pada area Air Strip Runway 2600 Bandara Depati Amir (PGK) tahun pertama yang mencapai 5,60 mm/tahun atau 100,76 Ton/Ha/tahun, laju erosi tahun kedua mencapai 3,38 mm/tahun atau 60,84 Ton/Ha/tahun dapat diklasifikasikan ke dalam kelas bahaya erosi sedang (kelas III) dan nilai SDR adalah sebesar 56,3%, nilai sediment yield (SR) pada tahun pertama sebesar 5.887,59 Ton/Tahun, pada tahun kedua ketika rumput pada area Air Strip telah tumbuh dengan sempurna terjadi penurunan hasil sediment yield yaitu nilai SR sebesar 3.554,85 Ton/Tahun.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1749 ◽  
Author(s):  
Lu ◽  
Chiang

In Taiwan, the steep landscape and highly vulnerable geology make it difficult to predict soil erosion and sediment transportation via variable transport conditions. In this study, we integrated the Taiwan universal soil loss equation (TUSLE) and slope stability conditions in the soil and water assessment tool (SWAT) as the SWAT-Twn model to improve sediment simulation and assess the sediment transport functions in the Chenyulan watershed, a small mountainous catchment. The results showed that the simulation of streamflow was satisfactory for calibration and validation. Before model calibration and validation for sediment, SWAT-Twn with default sediment transport method performed better in sediment simulation than the official SWAT model (version 664). The SWAT-Twn model coupled with the simplified Bagnold equation could estimate sediment export more accurately and significantly reduce the overestimated sediment yield by 65.7%, especially in highly steep areas. Furthermore, five different sediment transport methods (simplified Bagnold equation with/without routing by particle size, Kodoatie equation, Molinas and Wu equation, and Yang sand and gravel equation) were evaluated. It is suggested that modelers who conduct sediment studies in the mountainous watersheds with extreme rainfall conditions should adjust the modified universal soil loss equation (MUSLE) factors and carefully evaluate the sediment transportation equations in SWAT.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 135 ◽  
Author(s):  
Pavisorn Chuenchum ◽  
Mengzhen Xu ◽  
Wenzhe Tang

The Lancang–Mekong River basin, as an important transboundary river in Southeast Asia, is challenged by rapid socio-economic development, especially the construction of hydropower dams. Furthermore, substantial factors, such as terrain, rainfall, soil properties and agricultural activity, affect and are highly susceptible to soil erosion and sediment yield. This study aimed to estimate average annual soil erosion in terms of spatial distribution and sediment deposition by using the revised universal soil loss equation (RUSLE) and GIS techniques. This study also applied remote sensing and available data sources for soil erosion analysis. Annual soil erosion in most parts of the study area range from 700 to 10,000 t/km2/y with a mean value of 5350 t/km2/y. Approximately 45% of the total area undergoes moderate erosion. Moreover, the assessments of sediment deposition and erosion using the modified RUSLE and the GIS techniques indicate high sediment erosion along the flow direction of the mainstream, from the upper Mekong River to the Mekong Delta. The northern part of the upper Mekong River and the central and southern parts of the lower Mekong River are the most vulnerable to the increase in soil erosion rates, indicating sediment deposition.


Sign in / Sign up

Export Citation Format

Share Document