Estimation of the water retention curve for unsaturated clay

2011 ◽  
Vol 91 (4) ◽  
pp. 543-549 ◽  
Author(s):  
Seid Majdeddin Mir Mohammad Hosseini ◽  
Navid Ganjian ◽  
Yadolah Pashang Pisheh

Mir Mohammad Hosseini, S. M., Ganjian, N. and Pashang Pisheh, Y. 2011. Estimation of the water retention curve for unsaturated clay. Can. J. Soil Sci. 91: 543–549. Extensive laboratory tests are essential in order to determine the soil water retention curve, defined as the relationship between water content and suction, in an unsaturated soil. These laboratory tests are usually costly and time consuming. Moreover, for most practical problems, it has been found that approximate unsaturated soil properties are adequate for analysis. Thus, empirical procedures for predicting unsaturated soil parameters would be invaluable. The water retention curve can be estimated using soil properties to avoid the costs of experimental methods. Estimation of the water retention curve based on index properties is highly desirable due to its simplicity and low cost. Here, a model for the estimation of the soil water retention curve for fine soils is introduced, which takes the plasticity index and fine content into account, and is based on the Van Genuchten and Fredlund-Xing equations. The proposed equations are validated by comparing measured and simulated results. The curves predicted with these models were found to be in good agreement with the experimental results.

2021 ◽  
Vol 249 ◽  
pp. 09007
Author(s):  
Reihaneh Hosseini ◽  
Krishna Kumar ◽  
Jean-Yves Delenne

The soil water retention curve (SWRC) is the most commonly used relationship in the study of unsaturated soil. In this paper, the effect of porosity on the SWRC is investigated by numerically modeling unsaturated soil using the Shan-Chen multiphase Lattice Boltzmann Method. The shape of simulated SWRCs are compared against that predicted by the van Genuchten model, demonstrating a good fit except at low degrees of saturation. The simulated SWRCs show an increase in the air-entry value as porosity decreases.


2017 ◽  
Vol 16 (4) ◽  
pp. 869-877
Author(s):  
Vasile Lucian Pavel ◽  
Florian Statescu ◽  
Dorin Cotiu.ca-Zauca ◽  
Gabriela Biali ◽  
Paula Cojocaru

Pedosphere ◽  
2006 ◽  
Vol 16 (2) ◽  
pp. 137-146 ◽  
Author(s):  
Guan-Hua HUANG ◽  
Ren-Duo ZHANG ◽  
Quan-Zhong HUANG

2015 ◽  
Vol 68 (2) ◽  
pp. 207-213
Author(s):  
Luciana Portugal Menezes ◽  
Waldyr Lopes Oliveira Filho ◽  
Cláudio Henrique Carvalho Silva

AbstractReliable measurements of the Soil Water Retention Curve, SWRC, are necessary for solving unsaturated flow problems. In this sense, a method to obtain the SWRC of a silty sand using a flow pump, as well as details about procedures and some results, are herein presented. The overall conclusion is that the new method is very convenient, fully automated, and produces reliable results in a fast and easy way, making the technique very promising.


Sign in / Sign up

Export Citation Format

Share Document