unsaturated clay
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 18)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Xiaohua Bao ◽  
Xuedong Qi ◽  
Hongzhi Cui ◽  
Waiching Tang ◽  
Xiangsheng Chen

2021 ◽  
Author(s):  
Yue Huang ◽  
Huiguo Wu ◽  
Jian Liu ◽  
Yuedong Wu

The effect of wetting-drying cycles on deformation characteristics of an unsaturated clay model slope is investigated in this study. The model slope was compacted using kaolin clay mixed with thirty percent of fine sand. The deformations of slope were measured using particle image velocimetry (PIV) technique. The test results revealed that the model slope deforms mainly within a depth of 300 mm and the displacements of soil mass are nearly perpendicular to slope surface in the first two cycles. Such displacements, however, vanish gradually in the subsequent cycles. On the other hand, the magnitude of displacement along slope surface increases with the number of wetting-drying cycles. The depth affected by wetting-drying cycles increases gradually with the number of wetting-drying cycles and becomes stable finally.


Author(s):  
Zizhen LIU ◽  
Xiaogang WANG ◽  
Yue YIN ◽  
Jiwei LI ◽  
Guotao SHAO

In view of the clay slope instability caused by environmental temperature and rainfall infiltration in summer and autumn, the mechanism of the effect of temperature and saturation on unsaturated clay slope stability was discussed. To achieve this objective, this study uses the theoretical and numerical methods. Based on the theory of unsaturated clay and the law of heat conduction, the relationship between cohesion and matrix suction of unsaturated clay was derived considering the influences of temperature and saturation. Considering the effect of temperature and saturation, the coupling equation of shear strength of unsaturated clay was constructed under conditions of rainfall infiltration. The coupling equation of temperature and saturation was used in the strength reduction method, and the slope stability was analysed by FLAC software. The results show that the cohesion of unsaturated clay slope increases with the increase of depth, and the safety factor considering the coupled effect of temperature and saturation is smaller than that without considering the temperature effect; the clay slope is unstable considering the coupled effect of temperature and saturation, but stable without considering the coupled effect when the saturation of soil reaching 80%.Thematic collection: This article is part of the Role of water in destabilizing slopes collection available at: https://www.lyellcollection.org/cc/Role-of-water-in-destabilizing-slopes


2021 ◽  
Vol 293 ◽  
pp. 02011
Author(s):  
DaShu Guan ◽  
JiaXi Zheng ◽  
WenHao Huang ◽  
JunZhi Zhong ◽  
WenWen Du ◽  
...  

In order to study the influence of saturated characteristics of soft clay on unconfined compressive strength, the soft clay of Guangdong-Hong Kong-Macao Bay Area is taken as the research object, comparing and contrasting on unconfined compression test of saturated clay and unsaturated clay in laboratory, studying the variation law of unconfined compressive strength and sensitivity of unsaturated and saturated soft clay. The test results show that: 1. During the failure of unsaturated soft clay samples, oblique fractures appear, showing brittle shear failure, while the saturated clay samples appear constant bulging in the middle, and finally a “cross” is broken in the central bulging part, showing plastic shear failure.2. The unconfined compressive strength of unsaturated clay is about 10kPa higher than that of saturated soft clay, and its corresponding sensitivity is also about 0.4 higher. It can be shown that the soil saturation has a certain influence on the soil strength. The difference between saturated soil and unsaturated soil is the existence of gas phase. To be more precise, the existence of gas phase in unsaturated soil, i.e. the existence of suction, makes the soil stronger and presents the brittle shear failure form, while the saturated soil basically presents the plastic shear failure form.


Sign in / Sign up

Export Citation Format

Share Document