Long-term effects of orchard soil management on tree vigor and extractable soil nutrients

1992 ◽  
Vol 72 (4) ◽  
pp. 617-621 ◽  
Author(s):  
G. H. Neilsen ◽  
E. J. Hogue

Bisbee Delicious apple trees on M.26 (Malus domestica Borkh.) rootstock were planted in 1982 on a neutral pH, loamy-sand soil and were subjected to five soil management-fertilizer regimes until 1989. Orchard floor vegetation control with herbicides was required to maximize tree growth. Annual application of P at 50 kg ha−1 and K at 100 kg ha−1 from 1984 to 1989 increased extractable soil P and K to the 40-cm depth but did not appear to increase tree vigor. Orchard floor vegetation maintained extractable soil Ca and Mg levels compared to vegetation control treatments. Key words: Orchard floor vegetation management, extractable soil P, K, Ca and Mg

1997 ◽  
Vol 129 (2) ◽  
pp. 205-217 ◽  
Author(s):  
T. M. DAVISON ◽  
W. N. ORR ◽  
B. A. SILVER ◽  
R. G. WALKER ◽  
F. DUNCALFE

The phosphorus fertilizer requirements and long term productivity of nitrogen-fertilized Gatton panic (Panicum maximum cv. Gatton) pastures, grazed by lactating dairy cows, were evaluated over 7 years. Cows grazed at 2·6 cows/ha on pastures that received annually 100 or 300 kg N/ha at each of 0, 22·5 or 45 kg P/ha. Phosphorus treatments were applied as single superphosphate, balanced for calcium by applications of gypsum.The soil had an initial available soil phosphorus content of 40 mg/kg (bicarbonate extraction). At zero P fertilizer (0P), extractable soil P declined at the rate of 1·9 mg/kg each year; at 22·5P it was maintained close to the original level while at 45P it increased at 6·6 mg/kg each year. Increased P fertilizer caused significant (P<0·01) increases in plant P concentration from year 2 onwards. In years 6 and 7 there was significantly less green pasture and leaf on offer in 300N pastures at 0P than with 22·5P and 45P. There was no influence of rate of P fertilizer at 100N on pasture quantity on offer in any year. There were clear trends at 100N of decreasing total pasture and green dry matter (DM) on offer over the 7 years, but not at 300N.Cows at 300N consumed more leaf in the diet in autumn and winter than at 100N. Leaf was 55–60% of the diet in summer and autumn, but decreased to 21% (100N) and 37% (300N) in winter. Dead material in the diet was always higher at 100N. Pasture leaf percentage and leaf yield were the best individual predictors of leaf percentage in the diet. Diet P selected from pasture was reduced by the higher rate of N fertilizer in each season. Estimated P concentrations of the diet selected from pasture for summer, autumn and winter averaged 0·30, 0·38 and 0·28% DM for 100N and 0·19, 0·24 and 0·18% DM for 300N treatments, respectively.The response to P fertilizer was dependent on the rate of N fertilizer applied. The critical bicarbonate extractable soil P level for this soil type, below which pasture responses occurred, was 30 mg/kg at 300N. The critical level at 100N was not reached, but was <23 mg/kg P.


2012 ◽  
Vol 86 (1) ◽  
pp. 47-58 ◽  
Author(s):  
R. F. Powers ◽  
M. D. Busse ◽  
K. J. McFarlane ◽  
J. Zhang ◽  
D. H. Young

1991 ◽  
Vol 71 (4) ◽  
pp. 545-549
Author(s):  
G. H. Neilsen ◽  
E. J. Hogue ◽  
P. B. Hoyt

Nine years after liming a sandy loam orchard soil to pH 6.0 with calcium hydroxide or dolomitic lime, pH and extractable Ca and Mg were still higher where limed than where unlimed. However, pH had decreased below 5.0 in the limed and N-fertilized plots. Delicious (Malus domestica Borkh.) apple tree nutrition benefited from the two soil amendments. Leaf Mg was increased by dolomite. Leaf Ca was increased by calcium hydroxide. Leaf Mn, although highest in unlimed soils, increased over time for both limed and unlimed soil. Key words: Apple, lime application, reacidification


mSystems ◽  
2021 ◽  
Author(s):  
Andrew L. Neal ◽  
David Hughes ◽  
Ian M. Clark ◽  
Janet K. Jansson ◽  
Penny R. Hirsch

Changes in soil microbiome diversity and function brought about by land management are predicted to influence a range of environmental services provided by soil, including provision of food and clean water. However, opportunities to compare the long-term effects of combinations of stresses imposed by different management approaches are limited.


Soil Systems ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 11
Author(s):  
Wakene Negassa ◽  
Dirk Michalik ◽  
Wantana Klysubun ◽  
Peter Leinweber

Previous studies, conducted at the inception of rewetting degraded peatlands, reported that rewetting increased phosphorus (P) mobilization but long-term effects of rewetting on the soil P status are unknown. The objectives of this study were to (i) characterize P in the surface and subsurface horizons of long-term drained and rewetted percolation mires, forest, and coastal peatlands and (ii) examine the influence of drainage and rewetting on P speciation and distributions using wet-chemical and advanced spectroscopic analyses. The total P was significantly (p < 0.05) different at the surface horizons. The total concentration of P ranged from 1022 to 2320 mg kg−1 in the surface horizons and decreased by a factor of two to five to the deepest horizons. Results of the chemical, solution 31P nuclear magnetic resonance (NMR), and P K-edge X-ray absorption near-edge structure (XANES) indicated that the major proportions of total P were organic P (Po). In the same peatland types, the relative proportions of Po and stable P fractions were lower in the drained than in the rewetted peatland. The results indicate that long-term rewetting not only locks P in organic matter but also transforms labile P to stable P fractions at the surface horizons of the different peatland types.


1985 ◽  
Vol 65 (2) ◽  
pp. 309-315 ◽  
Author(s):  
G. H. NEILSEN ◽  
E. J. HOGUE

Bisbee Delicious apple trees (Malus domestica Borkh.) on Mailing 26 rootstock, planted in 1979 on an Osoyoos loamy sand were subjected, commencing in 1981, to five different orchard soil management treatments including full ground cover, early season vegetation control, total vegetation control, black plastic mulching and shallow tillage. All ground cover suppression treatments decreased leaf K and increased leaf Mg, leaf N and yield. With the exception of early season vegetation control, all ground cover suppression treatments decreased leaf P although P was adequate for initial growth. Declines in soil solution Ca, Mg, and K concentration, 1980–1983, were observed regardless of soil management method. Key words: Apples, M.26 rootstock, leaf N, P, K, Ca, Mg, fruit yield


Sign in / Sign up

Export Citation Format

Share Document