Response of pea to rate and placement of triple superphosphate fertilizer in Alberta

2001 ◽  
Vol 81 (4) ◽  
pp. 645-649 ◽  
Author(s):  
R. H. McKenzie ◽  
A. B. Middleton ◽  
E. D. Solberg ◽  
J. DeMulder ◽  
N. Flore ◽  
...  

The expansion of the pea acreage on the Canadian prairies has increased the need for more information on P fertilizer response by pea to both rate and method of placement. To determine responsiveness, 52 field trials using triple superphosphate (TSP) were conducted from 1995 to 1998 over a wide range of soil types across Alberta. Five rates of 0, 6.5, 13.1, 19.6 and 26.2 kg P ha–1 were placed with the seed or in bands applied prior to seeding. The application of TSP significantly (P < 0.1) increased pea seed yield at 19 of 52 sites. The average increase in seed yield due to TSP application was 7%, with values ranging from –12 to +33% across all trials. The average yield benefit was similar in the Thin Black, Black and Gray soil zones, but was negligible in the Dark Brown soil zone and in irrigated trials. Of the 31 trials with soil test P (modified Kelowna method) levels of less than 30 kg P ha–1 to 15 cm, 52% had a significant yield increase due to application of TSP, while only one of 17 trials with soil test P levels of more than 30 kg P ha–1 had a significant yield increase. Application of 13.1 kg P ha–1 was sufficient to attain close to maximum yields in trials with soil test P levels of less than 30 kg P ha–1. The yield response of pea was insensitive to TSP placement. The mineral impact of seed placement on yield in this study was likely due to the less damaging effects of seedling growth of TSP than of the more commonly used source of P, monoammonium phosphate (MAP). Seed protein and P concentrations were not strongly affected by TSP application. Key words: Pisum sativum, phosphorus fertilizer, fertilizer placement

2003 ◽  
Vol 83 (4) ◽  
pp. 431-441 ◽  
Author(s):  
R. H. McKenzie ◽  
E. Bremer ◽  
L. Kryzanowski ◽  
A. B. Middleton ◽  
E. D. Solberg ◽  
...  

Crop responsiveness to P fertilizers on the Canadian Prairies has likely declined during the past three to four decades due to regular application of P fertilizer and reduced tillage. Its relationship to extractable soil P as determined by various soil tests may also have changed. The objective of this study was to evaluate five soil test P methods for three major crops across a wide range of soil types and environmental conditions. Small-plot P fertilizer trials were conducted at 154 locations across Alberta from 1991 through 1993. At each location, fertilizer responses were determined for one, two, or three crops: barley (Hordeum vulgare L.), spring wheat (Triticum aestivum L.) or canola (Brassica napus L.). Fertilizer treatments consisted of seed-placed monoammonium phosphate at rates of 0, 6.5, 13.1 and 19.6 kg P ha-1. The average increase in seed yield due to application of P fertilizer was 10%, with little difference among crop types. Relative yield increases were significantly greater in Gray soils (Dark Gray Chernozemics, Dark Gray-Gray Luvisols) than in Black (Black Chernozemics) or Brown soi ls (Brown and Dark Brown Chernozemics). The maximum variation in P fertilizer response accounted for by any soil test P was 27% for barley, 15% for wheat and 7% for canola. The Kelowna method and its derivatives generally provided the best fit with P fertilizer response. Only a modest increase in the proportion of variation that could be accounted for by soil test was achieved by multiple regressions with soil pH, clay or organic matter or by separate analyses of different soil types or years. The probability of a profitable yield response due to P fertilizer application did decline with increasing soil test P. However, profitable yield responses were frequent at all levels of soil test P for the first increment of 6.5 kg P ha-1 and low at all levels of soil test P for the third increment of 6.5 kg P ha-1 (19.6 kg P ha-1). The poor relationship of soil test P to fertilizer response was attributed to frequent but variable starter effects of P fertilizer and the infrequent occurrence of highly responsive sites. Key words: Soil testing, Olsen, Bray, Kelowna, fertilizer response functions, Hordeum vulgare, Triticum aestivum, Brassica napus


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 195 ◽  
Author(s):  
Timothy Boring ◽  
Kurt Thelen ◽  
James Board ◽  
Jason De Bruin ◽  
Chad Lee ◽  
...  

To determine if current university fertilizer rate and timing recommendations pose a limitation to high-yield corn (Zea mays subsp. mays) and soybean (Glycine max) production, this study compared annual Phosphorous (P) and Potassium (K) fertilizer applications to biennial fertilizer applications, applied at 1× and 2× recommended rates in corn–soybean rotations located in Minnesota (MN), Iowa (IA), Michigan (MI), Arkansas (AR), and Louisiana (LA). At locations with either soil test P or K in the sub-optimal range, corn grain yield was significantly increased with fertilizer application at five of sixteen site years, while soybean seed yield was significantly increased with fertilizer application at one of sixteen site years. At locations with both soil test P and K at optimal or greater levels, corn grain yield was significantly increased at three of thirteen site years and soybean seed yield significantly increased at one of fourteen site years when fertilizer was applied. Site soil test values were generally inversely related to the likelihood of a yield response from fertilizer application, which is consistent with yield response frequencies outlined in state fertilizer recommendations. Soybean yields were similar regardless if fertilizer was applied in the year of crop production or before the preceding corn crop. Based on the results of this work across the US and various yield potentials, it was confirmed that the practice of applying P and K fertilizers at recommended rates biennially prior to first year corn production in a corn–soybean rotation does not appear to be a yield limiting factor in modern, high management production systems.


1967 ◽  
Vol 47 (3) ◽  
pp. 175-185 ◽  
Author(s):  
R. F. Bishop ◽  
C. R. MacEachern ◽  
D. C. MacKay

In field experiments, conducted at 18 locations during a 3-year period, tuber yields on zero-P plots ranged from 49.7–95.5% of those obtained with optimum P fertilization. Each of three chemical methods used to estimate available soil P showed a wide range of values for the different locations.When Bray's modification of the Mitscherlich equation was used to express the relationship between soil test values and yield response to applied P, there were appreciable differences in c1 values which varied with soil series and soil test methods.Polynomial response curves showed that, irrespective of the chemical method used, if soils were grouped on the basis of available P into "high", "medium" and "low" classes, response to applied P was much less in the high than in the medium and low classes. Response curves also showed that both P requirements and maximum yields varied with different soil series.


2004 ◽  
Vol 52 (2) ◽  
pp. 157-163
Author(s):  
C. U. Egbo ◽  
M. A. Adagba ◽  
D. K. Adedzwa

Field trials were conducted in the wet seasons of 1997 and 1998 at Makurdi, Otukpo and Yandev in the Southern Guinea Savanna ecological zone of Nigeria to study the responses of ten soybean genotypes to intercropping. The experiment was laid out in a randomised complete block design. The genotypes TGX 1807-19F, NCRI-Soy2, Cameroon Late and TGX 1485-1D had the highest grain yield. All the Land Equivalent Ratio (LER) values were higher than unity, indicating that there is great advantage in intercropping maize with soybean. The yield of soybean was positively correlated with the days to 50% flowering, days to maturity, plant height, pods/plant and leaf area, indicating that an improvement in any of these traits will be reflected in an increase in seed yield. There was a significant genotype × yield × location interaction for all traits. This suggests that none of these factors acted independently. Similarly, the genotype × location interaction was more important than the genotype × year interaction for seed yield, indicating that the yield response of the ten soybean genotypes varied across locations rather than across years. Therefore, using more testing sites for evaluation may be more important than the number of years.


1986 ◽  
Vol 22 (3) ◽  
pp. 243-251 ◽  
Author(s):  
B. R. Taylor ◽  
J. Y. Chambi

SUMMARYField trials are described in which the seed yield response of row-sown sesame to increasing plant population was examined, and in which row-sowing was compared with broadcasting at different seed rates. Maximum yields were obtained at an intended 200 to 250 × 103 plants ha−1 but yields were not greatly affected by a wider range of populations. Broadcasting, the normal local practice, gave yields slightly higher than those from rows 50 cm apart, the un-thinned rate of 800 × 103 viable seeds sown ha−1 yielded as well as treatments thinned to the optimum population, and double this seed rate, unthinned, gave the lowest yields, especially in rows.


2003 ◽  
Vol 83 (4) ◽  
pp. 443-449 ◽  
Author(s):  
R. H. McKenzie ◽  
E. Bremer

Soil tests for available P may not be accurate because they do not measure the appropriate P fraction in soil. A sequential extraction technique (modified Hedley method) was used to determine if soil test P methods were accurately assessing available pools and if predictions of fertilizer response could be improved by the inclusion of other soil P fractions. A total of 145 soils were analyzed from field P fertilizer experiments conducted across Alberta from 1991 to 1993. Inorganic P (Pi) removed by extraction with an anion-exchange resin (resin P) was highly correlated with the Olsen and Kelowna-type soil test P methods and had a similar relationship with P fertilizer response. No appreciable improvement in the fit of available P with P fertilizer response was achieved by including any of the less available P fractions in the regression of P fertilizer response with available P. Little Pi was extractable in alkaline solutions (bicarbonate and NaOH), particularly in soils from the Brown and Dark Brown soil zones. Alkaline fractions were the most closely related to resin P, but the relationship depended on soil zone. Inorganic P extractable in dilute HCl was most strongly correlated with soil pH, reflecting accumulation in calcareous soils, while Pi extractable in concentrated acids (HCl and H2SO4) was most strongly correlated with clay concentration. A positive but weak relationship as observed between these fractions and resin P. Complete fractionation of soil P confirmed that soil test P methods were assessing exchangeable, plant-available P. Key words: Hedley phosphorus fractionation, resin, Olsen, Kelowna


Soil Research ◽  
1994 ◽  
Vol 32 (3) ◽  
pp. 503 ◽  
Author(s):  
MDA Bolland ◽  
IR Wilson ◽  
DG Allen

Twenty-three virgin Western Australian soils of different buffer capacities (BC) for phosphorus (P) were collected. The effects of BC on the relationships between Colwell soil test P and the level of P applied, yield and soil test P, and yield and the level of P applied were studied. Wheat (Triticum aestivum cv. Reeves), grown for 27 days in a glasshouse, was used. Two methods of measuring P sorption of soils, P buffer capacity (PBC) and P retention index (PRI), were used. The PBC is determined from a multi-point sorption curve. The PRI is a new, diagnostic, one-point, sorption method now widely used for commercial soil P testing in Western Australia. Both PBC and PRI produced similar results. The relationship between soil test P and the level of P applied was adequately described by a linear equation. When the slope coefficient of the linear equations was related to PBC or PRI, there was no relationship. The other two relationships were adequately described by a Mitscherlich equation. When the curvature coefficient of the Mitscherlich equation was related to PBC or PRI, the trend was for the value of the coefficient to decrease with increasing PBC or PRI. Consequently, as the capacity of the soil to sorb P increased the trend was for larger soil test P or higher levels of P application to produce the same yield.


1981 ◽  
Vol 21 (112) ◽  
pp. 516 ◽  
Author(s):  
AD Rovira ◽  
PG Brisbane ◽  
A Simon ◽  
DG Whitehead ◽  
RL Correll

Significant yield responses of up to 0.9 t/ha were obtained with the nematicides aldicarb and dibromochloropropane in seven of eleven field trials with the wheat variety, Condor. Both nematicides reduced the numbers of white cysts of Heterodera avenae on the roots of wheat. With aldicarb the increase in wheat yields varied directly as the decrease in white cysts: dibromochloropropane gave similar increases in yield as aldicarb with a greater reduction in cyst numbers. There was no yield increase with either nematicide when cereal cyst nematode was not present. An analysis of covariance indicated that over all the sites 64% of the increase in yield due to aldicarb could be explained in terms of cysts of cereal cyst nematode.


2019 ◽  
Vol 99 (6) ◽  
pp. 862-872 ◽  
Author(s):  
S.F. Hwang ◽  
H.U. Ahmed ◽  
Q. Zhou ◽  
H. Fu ◽  
G.D. Turnbull ◽  
...  

Clubroot, caused by Plasmodiophora brassicae, is an important constraint on canola (Brassica napus) production in Canada. Rotations of clubroot-resistant (CR) canola cultivars in various sequences and planting intervals between canola with non-host crops and fallow periods were evaluated to determine their effects on clubroot severity and P. brassicae resting spore populations under field and micro-plot conditions. Under micro-plot conditions, the rotation sequences including CR canola, continuous fallow, and the non-host barley reduced gall weight by 63%–100% and clubroot severity by 34%–100% compared with continuous planting of susceptible canola. No visible clubroot symptoms developed following continuous fallow or the non-host crop. Under field conditions, clubroot severity was very high (78% disease index) in the continuous susceptible canola sequence. Most of the CR canola rotation sequences significantly reduced clubroot severity by 12%–23%, but continuous fallow, continuous barley, and alternating the CR canola cultivars ‘45H29’ or ‘73-47’ with ‘TC72429-10’ reduced clubroot severity by 32%–36%. A comparison of intervals between canola crops and four cropping sequences (continuous susceptible canola, alternating canola with barley or pea, a 2-yr non-host interval between canola crops, and a 3-yr non-host interval between canola crops) was conducted over 5 yr. A 2- or 3-yr non-host interval improved plant height, plant biomass, and seed yield, and reduced gall mass, P. brassicae propagules in the soil, and clubroot severity. A significant yield increase of more than 3600% was observed in a 3-yr non-host interval.


1993 ◽  
Vol 24 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
S. S. Malhi ◽  
M. Nyborg ◽  
D. C. Penney ◽  
L. Kryzanowski ◽  
J. A. Robertson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document