scholarly journals Long-term effects of fertilizer on yield and species composition of contrasting pasture swards in the Aspen Parkland of the Northern Great Plains

1997 ◽  
Vol 77 (4) ◽  
pp. 607-614 ◽  
Author(s):  
S. Bittman ◽  
D. H. McCartney ◽  
J. Waddington ◽  
P. R. Horton ◽  
W. F. Nuttall

Little is known about the effects of long-term application of fertilizer on the complex pasture swards of the Aspen Parkland region of western Canada. Experiments were conducted, lasting from 1980 to 1992, on five contrasting swards representative of permanent pastures in northeast Saskatchewan to determine the long-term effects of N, P, K and S fertilizer on herbage yield and species composition. The experimental swards consisted primarily of smooth bromegrass (Bromus inermis Leyss.), Kentucky bluegrass (Poa pratensis L), and creeping red fescue (Festuca rubra L.), in varying amounts. Seven fertilizer treatments were applied at each site from 1980 to 1991 (shown as N-P-K-S in kg ha−1): 0-0-0-0, 45-0-0-0, 45-20-0-0, 90-0-0-0, 90-20-0-0, 90-20-50-20, 180-20-0-0. Another treatment (90-20-0-20) was added in 1984. An area within each plot was protected from grazing with wire exclosures and harvested in July and September. Harvested samples were classified according to coarse-leafed grasses (mostly smooth bromegrass), fine-leafed grasses (mostly Kentucky bluegrass and creeping red fescue), legumes and weeds before drying and weighing. Ground cover composition of all plots was measured by a modified line transect technique in 1980, 1987 and 1992. All swards, regardless of species composition, responded positively to fertilizer. The yield increase obtained from applying 45 or 90 kg N ha−1 (0.8 and 0.7 t ha−1, respectively) was more than doubled by adding 20 kg P ha−1 with the N. Nitrogen applied alone did not affect the proportion of bromegrass but increased the proportion of fine grasses in the herbage; adding N and P increased the proportion of coarse grass and at the expense of fine grasses. With respect to sward composition, N decreased the proportion of bromegrass and increased the proportion of bluegrass and fescue whereas adding N and P had the opposite effect. Application of S increased yield 0.9 to 1.8 t ha−1 and greatly increased the proportion of bromegrass in the sward and the harvested herbage of the three sites with low levels of soil S. The residual effect of the N and P treatments on yield was small but the effect on species composition of the herbage was substantial; S produced a residual effect on yield in 1992 and a large residual effect on species composition. The results indicate the need for balanced nutrient application to enhance yield and maintain or improve sward species composition of pastures in the Aspen Parkland. Fertilizer can be used to improve yield on a wide range of sward types. Key words: Bromegrass, Bromus inermis, bluegrass, Poa pratensis, fescue, Festuca rubra, legume, N, P, K, S, grazing, species diversity

Weed Science ◽  
1973 ◽  
Vol 21 (5) ◽  
pp. 421-423
Author(s):  
J. M. Hodgson

Herbicides were evaluated for selectivity between three tall coarse grasses and three short fine grasses. Reed canarygrass (Phalaris arundinaceaL.), quackgrass [Agropyron repens(L.) Beauv.], and smooth brome (Bromus inermisLeyss) were consistently more susceptible to amitrole-NH4CN (3-amino-s-triazole-ammonium thiocyanate) than three desirable short grasses, Kentucky bluegrass (Poa pratensisL.), creeping red fescue (Festuca rubraL.), and redtop (Agrostis albaL.). Reed canarygrass and redtop were more susceptible to dalapon (2,2-dichloropropionic acid) than creeping red fescue. Amitrole-NH4CN and dalapon combinations were more toxic to reed canarygrass, smooth brome, and redtop than creeping red fescue. Pyriclor (2,3,5-trichloro-4-pyridinol) was quite toxic to all grasses with Kentucky bluegrass showing the most tolerance. When TCA (trichloroacetic acid) was combined with amitrole-NH4CN results were similar to the dalapon combination but overall toxicity was reduced.


Weed Science ◽  
1987 ◽  
Vol 35 (1) ◽  
pp. 95-98 ◽  
Author(s):  
Prasanta C. Bhowmik

A red fescue (Festuca rubraL.)- Kentucky bluegrass (Poa pratensisL.) turf was treated annually with amidochlor {N-[(acetylamino)methyl]-2-chloro-N-(2,6-diethylphenyl)acetamide} at 2.2, 2.8, and 3.4 kg ai/ha, mefluidide {N-[2,4-dimethyl-5-[[(trifluoromethyl)sulfonyl] amino] phenyl] acetamide} at 0.4 kg ai/ha, and ethephon [(2-chloroethyl) phosphonic acid] at 5.6 kg ai/ha for three consecutive years. Recuperative potential of treated turfgrass was determined in the field and in a greenhouse study. Amidochlor and mefluidide treatments injured turfgrass (11 to 64%) four weeks after application. However, turfgrass recovered after eight weeks. Amidochlor at 2.8 to 3.4 kg/ha and mefluidide at 0.4 kg/ha suppressed (75 to 100%) seedhead development. Ethephon at 5.6 kg/ha was ineffective. Turfgrass recovered normally each spring after amidochlor treatments, with no delay in spring green-up. Root length, root weight, and root:shoot weight ratio of the plugs from the greenhouse study were unaffected by three consecutive annual applications of amidochlor, mefluidide, and ethephon. One annual spring application of amidochlor, mefluidide, and ethephon for three consecutive years caused no adverse effects that would limit their use on red fescue-Kentucky bluegrass turf.


2002 ◽  
Vol 12 (3) ◽  
pp. 465-469 ◽  
Author(s):  
D.S. Gardner ◽  
J.A. Taylor

In 1992, a cultivar trial was initiated in Columbus, Ohio to evaluate differences in establishment and long-term performance of cultivars of tall fescue (Festuca arundinacea), creeping red fescue (F. rubra), chewings fescue (F. rubra ssp. fallax), hard fescue (F. brevipila), kentucky bluegrass (Poa pratensis), rough bluegrass (P. trivialis), and perennial ryegrass (Lolium perenne) under low maintenance conditions in a shaded environment. Fertilizer and supplemental irrigation were applied until 1994 to establish the grasses, after which no supplemental irrigation, or pesticides were applied and fertilizer rates were reduced to 48.8 kg·ha-1 (1 lb/1000 ft2) of N per year. Percentage cover and overall quality data were collected in 2000 and compared with data collected in 1994. Initial establishment success does not appear to be a good predictor of long-term success of a cultivar in a shaded environment. There was some variability in cultivar performance under shade within a given turfgrass species. The tall fescue cultivars, as a group, had the highest overall quality and percentage cover under shade, followed by the fine fescues, kentucky bluegrass, rough bluegrass, and perennial ryegrass cultivars.


Weed Science ◽  
1977 ◽  
Vol 25 (6) ◽  
pp. 487-491 ◽  
Author(s):  
S.W. Bingham

Yellow nutsedge (Cyperus esculentusL.) control with herbicides was evaluated with and without competition from turfgrasses. Postemergence applications of cyperquat (1-methyl-4-phenylpryidinium) provided safe selective control of yellow nutsedge in Kentucky bluegrass (Poa pratensisL. ‘Merion’), perennial ryegrass (Lolium perenneL. ‘Manhatten’), and red fescue (Festuca rubraL. ‘Pennlawn’). Pre- and post-emergence applications of perfluidone {1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl] methanesulfonamide} controlled yellow nutsedge when rainfall or irrigation was adequate for good turfgrass growth. Under dry conditions, perfluidone slightly injured Kentucky bluegrass and gave poor control of yellow nutsedge. Bentazon [3-isopropyl-1H-2,1,3-benzothiadiazin-(4)3H-one2,2-dioxide] was less effective than cyperquat or perfluidone for yellow nutsedge control and required split applications. Bentazon did not injure Kentucky bluegrass. Napropamide [2-(α-naphthoxy)-N,N-diethylpropionamide] and Vel 3973 [N-(2,4-dimethyl-5-{[(trifluoromethyl)sulfonyl]amino}phenyl)acetamide] did not provide adequate yellow nutsedge control. Vel 5052 {2-chloro-N-(2,6-dimethyl-phenyl-N-[(1,3-dioxolan-2-yl)methyl] acetamide}showed promise for yellow nutsedge control.


Weed Science ◽  
1984 ◽  
Vol 32 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Hideo Hosaka ◽  
Hideo Inaba ◽  
Hisao Ishikawa

Postemergence applications of BAS 9052 OH, {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one}, at 0.25 and 0.5 kg ai/ha were made to 27 temperate and 28 tropical species ofGramineae. Annual bluegrass (Poa annuaL. ♯3POAAN) and rattail fescue (Festuca myurosL. ♯ VLPMY) were resistant to these rates of BAS 9052 OH. Five species of fescue and three species of bluegrass received postemergence applications of BAS 9052 OH at rates of 0.1 to 6.4 kg ai/ha. The germination of seeds and the subsequent growth of the seedlings of these species as influenced by various concentrations of BAS 9052 OH were also studied. Meadow fescue (Festuca pratensisHuds. ♯ FESPR), tall fescue (Festuca arundinaceaSchreb. ♯ FESAR), Kentucky bluegrass (Poa pratensisL. ♯ POAPR), and rough-stalked meadowgrass (Poa trivialisL. ♯ POATR) were most susceptible; annual bluegrass was somewhat less resistant; hard fescue (Festuca longifoliaThuill) was resistant; red fescue (Festuca rubraL. ♯ FESRU) and rattail fescue were very resistant.


2005 ◽  
Vol 85 (1) ◽  
pp. 213-224 ◽  
Author(s):  
J. J. Soroka ◽  
B. D. Gossen

Silvertop, which is characterized by whitish, completely sterile seed heads produced on green tillers, is a common symptom in many perennial grasses. A 3-yr study of creeping bentgrass (Agrostis palustris), Kentucky bluegrass (Poa pratensis) and creeping red fescue (Festuca rubra subsp. rubra) grown for seed production was conducted at Saskatoon, Saskatchewan, to investigate the cause(s) of silvertop, the impact of residue management strategies on silvertop incidence, and the impact of silvertop on seed yield. Three residue management practices were applied in the fall of the first harvest year and again the next fall, as follows: (i) burned after harvest; (ii) clipped to 1–2 cm in height and the residue removed; or (iii) mowed to 20 cm and the residue retained. Arthropods in each plot were collected weekly from May until July by sweep sampling, counted, and identified to family level or lower, and the incidence of seed heads with and without silvertop were assessed. The majority of arthropods were thrips, leafhoppers, plant bugs, mites, or grass-dwelling flies. Grass species and residue treatment strongly affected the number of reproductive tillers and levels of silvertop. Levels of silvertop were lowest in creeping bentgrass in all 3 yr of the study, while they were similar for Kentucky bluegrass and creeping red fescue. Mown plots had fewer reproductive tillers, fewer heathy seed heads, and higher levels of silvertop than burned or clipped plots. However, arthropod species composition was generally similar across grass species and residue treatments. This indicates that a specific arthropod taxon may not be a critical factor in silvertop expression. The relationship between the number and composition of arthropods found and incidence of silvertop is discussed. Key words: Festuca rubra subsp. rubra, Poa pratensis, Agrostis palustris, seed production, arthropods, silvertop


Weed Science ◽  
1978 ◽  
Vol 26 (6) ◽  
pp. 675-678 ◽  
Author(s):  
W. O. Lee

The carbon banding technique was evaluated for control of volunteer Kentucky bluegrass(Poa pratensisL.) while Kentucky bluegrass was established for seed production. At Madras, Oregon, where terbacil (3-tert-butyl-5-chloro-6-methyluracil), diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], and simazine [2-chloro-4,6-bis(ethylamino)-s-triazine] were applied at several rates each, volunteer Kentucky bluegrass control between the carbon bands ranged from 80 to 99+%. At Corvallis, Oregon, where Colonial bentgrass(Agrostis tenuisSibth. ‘Highland’), red fescue(Festuca rubraL. ‘Pennlawn’), perennial ryegrass(Lolium perenneL. ‘NK-100’), and orchardgrass(Dactylis glomerataL. ‘S-143’) were planted to allow identification of volunteer Kentucky bluegrass both between and in the carbon bands, diuron, atrazine, and a combination of diuron and terbacil eliminated volunteer Kentucky bluegrass. Terbacil did not control all Kentucky bluegrass between the bands. None of the herbicide treatments adversely affected crop establishment or seed yield.


Weed Science ◽  
1980 ◽  
Vol 28 (5) ◽  
pp. 579-585 ◽  
Author(s):  
S. W. Bingham ◽  
J. Segura ◽  
C. L. Foy

The susceptibility of 2- and 4-month-old perennial ryegrass (Lolium perenneL.), orchardgrass (Dactylis glomerataL.), Kentucky bluegrass (Poa pratensisL.), red fescue (Festuca rubraL.) and highland bentgrass (Agrostis tenuisSibth.) to glyphosate [N-(phosphonomethyl)glycine] was studied in the greenhouse. All 2-month-old grasses were killed by 0.28 kg/ha and higher rates of glyphosate. At 0.14 kg/ha, red fescue was moderately resistant, and bluegrass, orchardgrass, and perennial ryegrass were moderately susceptible. Bent-grass was very susceptible. When 4-month-old grasses were treated, bluegrass was as tolerant to 0.28 kg/ha of glyphosate as was red fescue. At this same rate, orchardgrass and perennial ryegrass were moderately susceptible, whereas bentgrass remained the most susceptible. Dosages lower than 0.28 kg/ha had little effect; whereas higher doages injured all five species.14C-glyphosate was absorbed and translocated via both apoplast and symplast in 1-month-old red fescue, orchardgrass and perennial ryegrass seedlings. Comparatively, less radioactivity was transported to the untreated areas in red fescue than in orchardgrass and perennial ryegrass. Thus, the differential tolerances of these species to low rates of glyphosate may be explained, in part, by differential translocation of glyphosate.


Sign in / Sign up

Export Citation Format

Share Document