scholarly journals MODELING DNA METHYLATION TILING ARRAY DATA

Author(s):  
Gayla Olbricht ◽  
Bruce A. Craig ◽  
R. W. Doerge
2019 ◽  
Vol 48 (D1) ◽  
pp. D890-D895 ◽  
Author(s):  
Zhuang Xiong ◽  
Mengwei Li ◽  
Fei Yang ◽  
Yingke Ma ◽  
Jian Sang ◽  
...  

Abstract Epigenome-Wide Association Study (EWAS) has become an effective strategy to explore epigenetic basis of complex traits. Over the past decade, a large amount of epigenetic data, especially those sourced from DNA methylation array, has been accumulated as the result of numerous EWAS projects. We present EWAS Data Hub (https://bigd.big.ac.cn/ewas/datahub), a resource for collecting and normalizing DNA methylation array data as well as archiving associated metadata. The current release of EWAS Data Hub integrates a comprehensive collection of DNA methylation array data from 75 344 samples and employs an effective normalization method to remove batch effects among different datasets. Accordingly, taking advantages of both massive high-quality DNA methylation data and standardized metadata, EWAS Data Hub provides reference DNA methylation profiles under different contexts, involving 81 tissues/cell types (that contain 25 brain parts and 25 blood cell types), six ancestry categories, and 67 diseases (including 39 cancers). In summary, EWAS Data Hub bears great promise to aid the retrieval and discovery of methylation-based biomarkers for phenotype characterization, clinical treatment and health care.


2012 ◽  
Vol 28 (11) ◽  
pp. 1471-1479 ◽  
Author(s):  
Christian Otto ◽  
Kristin Reiche ◽  
Jörg Hackermüller

2013 ◽  
Vol 109 (6) ◽  
pp. 1394-1402 ◽  
Author(s):  
C S Wilhelm-Benartzi ◽  
D C Koestler ◽  
M R Karagas ◽  
J M Flanagan ◽  
B C Christensen ◽  
...  

2009 ◽  
Vol 25 (18) ◽  
pp. 2341-2347 ◽  
Author(s):  
Pierre Nicolas ◽  
Aurélie Leduc ◽  
Stéphane Robin ◽  
Simon Rasmussen ◽  
Hanne Jarmer ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2425-2425
Author(s):  
Go Yamamoto ◽  
Fumihiko Nakamura ◽  
Mitsuru Iio ◽  
Motohiro Kato ◽  
Yasuhito Nannya ◽  
...  

Abstract Myelodysplastic syndromes are heterogeneous groups of clonal hematopoietic disorders characterized by ineffective blood cells production and predisposition to acute myeloid leukemia, and as such, it is well established that these syndromes actually represent neoplastic processes in which a series of gene mutations accumulate in blood cell precursors, leading to neoplastic expansion of dominant clones. During the past two decades, a number of genetic abnormalities have been described in MDS cases, including copy number alterations of particular chromosomal segments, mutations of Ras, p53, runx1, and Flt3 genes, and translocation involving Evi-1 family genes, TEL, MLL and Nup98 genes. On the other hand, epigenetic abnormalities are also thought to play an important role in the pathogenesis of MDS, because demethylating agents such as 5-azacydine and decitabine are often effective for high risk MDS. Unfortunately, however, only a few genes, such as INK4B gene, have been implicated in MDS pathogenesis. Especially, no genome-wide analysis of epigenetic changes in MDS has been reported. So, in the current study, we comprehensively investigated abnormalities of DNA methylation in 30 MDS specimens, using Affymetrix tiling array combined with methylated DNA immunoprecipitation (MeDIP). In this method, genomic DNA from MDS specimens was first fragmentized with ultrasonication and immuno-precipitated with anti-methylcytosine antibody (MeDIP). The immunoprecipitated DNA was then amplified by PCR and subjected to hybridization to the promorter tiling array. In this array, regulatory regions of more than 25,000 genes are tiled by 6.5 millions of oligonucleotide probes to enable sensitive detection of target sequences and approximately 59% of CpG islands in the human genomes are covered in a single array. The extent and distribution of methylation were highly variable between specimens, although some CpG islands, such as p15INK4B and HOX gene clusters, seemed to be commonly involved in different cases (Figure). In conclusion, MeDIP on chip analysis could be a powerful method for genome-wide detection of DNA methylation and facilitate our understanding of the pathogenesis of MDS. Figure Figure


2020 ◽  
Author(s):  
Sean K. Maden ◽  
Reid F. Thompson ◽  
Kasper D. Hansen ◽  
Abhinav Nellore

AbstractWhile DNA methylation (DNAm) is the most-studied epigenetic mark, few recent studies probe the breadth of publicly available DNAm array samples. We collectively analyzed 35,360 Illumina Infinium HumanMethylation450K DNAm array samples published on the Gene Expression Omnibus (GEO). We learned a controlled vocabulary of sample labels by applying regular expressions to metadata and used existing models to predict various sample properties including epigenetic age. We found approximately two-thirds of samples were from blood, one-quarter were from brain, and one-third were from cancer patients. 19% of samples failed at least one of Illumina’s 17 prescribed quality assessments; signal distributions across samples suggest modifying manufacturer-recommended thresholds for failure would make these assessments more informative. We further analyzed DNAm variances in seven tissues (adipose, nasal, blood, brain, buccal, sperm, and liver) and characterized specific probes distinguishing them. Finally, we compiled DNAm array data and metadata, including our learned and predicted sample labels, into database files accessible via the recountmethylation R/Bioconductor companion package. Its vignettes walk the user through some analyses contained in this paper.


Author(s):  
Gayla Olbricht ◽  
Nagesh Sardesai ◽  
Stanton B. Gelvin ◽  
Bruce A. Craig ◽  
R. W. Doerge

Sign in / Sign up

Export Citation Format

Share Document