epigenetic age
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 228)

H-INDEX

20
(FIVE YEARS 7)

Author(s):  
Benjamin Seligman ◽  
Sarah D Berry ◽  
Lewis A Lipsitz ◽  
Thomas G Travison ◽  
Douglas P Kiel

Abstract Age-associated changes in DNA methylation have been implicated as one mechanism to explain the development of frailty, however previous cross-sectional studies of epigenetic age acceleration (eAA) and frailty have had inconsistent findings. Few longitudinal studies have considered the association of eAA with change in frailty. We sought to determine the association between eAA and change in frailty in the MOBILIZE Boston cohort. Participants were assessed at two visits 12-18 months apart. Intrinsic, extrinsic, GrimAge, and PhenoAge eAA were assessed from whole blood DNA methylation at baseline using the Infinium 450k array. Frailty was assessed by a continuous frailty score based on the frailty phenotype and by frailty index (FI). Analysis was by correlation and linear regression with adjustment for age, sex, smoking status, and BMI. 395 participants with a frailty score and 431 with a FI had epigenetic and follow-up frailty measures. For the frailty score and FI cohorts, respectively, mean (SD) ages were 77.8 (5.49) and 77.9 (5.47), 232 (58.7%) and 257 (59.6%) were female. All participants with epigenetic data identified as white. Baseline frailty score was not correlated with intrinsic or extrinsic eAA, but was correlated with PhenoAge and, even after adjustment for covariates, GrimAge. Baseline FI was correlated with extrinsic, GrimAge, and PhenoAge eAA with and without adjustment. No eAA measure was associated with change in frailty, with or without adjustment. Our results suggest that no eAA measure was associated with change in frailty. Further studies should consider longer periods of follow-up and repeated eAA measurement.


2022 ◽  
Vol 12 (1) ◽  
pp. 110
Author(s):  
Sofia Malyutina ◽  
Olga Chervova ◽  
Taavi Tillmann ◽  
Vladimir Maximov ◽  
Andrew Ryabikov ◽  
...  

We investigated the relationship between ‘epigenetic age’ (EA) derived from DNA methylation (DNAm) and myocardial infarction (MI)/acute coronary syndrome (ACS). A random population sample was examined in 2003/2005 (n = 9360, 45–69, the HAPIEE project) and followed up for 15 years. From this cohort, incident MI/ACS (cases, n = 129) and age- and sex-stratified controls (n = 177) were selected for a nested case-control study. Baseline EA (Horvath’s, Hannum’s, PhenoAge, Skin and Blood) and the differences between EA and chronological age (CA) were calculated (ΔAHr, ΔAHn, ΔAPh, ΔASB). EAs by Horvath’s, Hannum’s and Skin and Blood were close to CA (median absolute difference, MAD, of 1.08, –1.91 and –2.03 years); PhenoAge had MAD of −9.29 years vs. CA. The adjusted odds ratios (ORs) of MI/ACS per 1–year increments of ΔAHr, ΔAHn, ΔASB and ΔAPh were 1.01 (95% CI 0.95–1.07), 1.01 (95% CI 0.95–1.08), 1.02 (95% CI 0.97–1.06) and 1.01 (0.93–1.09), respectively. When classified into tertiles, only the highest tertile of ΔAPh showed a suggestion of increased risk of MI/ACS with OR 2.09 (1.11–3.94) independent of age and 1.84 (0.99–3.52) in the age- and sex-adjusted model. Metabolic modulation may be the likely mechanism of this association. In conclusion, this case-control study nested in a prospective population-based cohort did not find strong associations between accelerated epigenetic age markers and risk of MI/ACS. Larger cohort studies are needed to re-examine this important research question.


Author(s):  
Lili Xiao ◽  
Gaohui Zan ◽  
Chaoqun Liu ◽  
Xia Xu ◽  
Longman Li ◽  
...  

Background Individuals of the same chronological age may exhibit diverse susceptibilities to death. However, few studies have investigated the associations between blood pressure and the accelerated aging. Methods and Results A cross‐sectional study was conducted in 288 adults aged ≥50 years. We assessed the DNA methylation‐based measures of biological age using CpG sites on the Illumina HumanMethylationEPIC BeadChip. Epigenetic age acceleration metrics were derived by regressing residuals (ΔAge) and ratios (aging rate) of DNA methylation age on chronological age. Dose‐response relationships between blood pressure and epigenetic age acceleration were quantified using multiple linear regression and restricted cubic regression models. We found that each 10–mm Hg increase in systolic blood pressure was associated with 0.608 (95% CI, 0.231–0.984) years increase in ΔAge and 0.007 (95% CI, 0.002–0.012) increase in aging rate; meanwhile, for pulse pressure, the increase was 1.12 (95% CI, 0.625–1.61) years for ΔAge and 0.013 (95% CI, 0.007–0.020) for aging rate. Subgroup analysis showed that the significant associations of systolic blood pressure and pulse pressure with epigenetic age acceleration appeared to be limited to women, although interactions between blood pressure and sex were not significant ( P values for interaction >0.05). The combination of women and hypertension was associated with a much higher increase in ΔAge (β [95% CI], 4.05 [1.07–7.02]) and aging rate (β [95% CI], 0.047 [0.008–0.087]), compared with male participants without hypertension. Conclusions Our findings suggested that high systolic blood pressure and pulse pressure were associated with the epigenetic age acceleration, providing important clues for relationships between blood pressure and epigenetic aging.


2022 ◽  
Author(s):  
Siddhartha P. Kar ◽  
Pedro M. Quiros ◽  
Muxin Gu ◽  
Tao Jiang ◽  
Ryan Langdon ◽  
...  

Clonal hematopoiesis (CH) is one of the most extensively studied somatic mutational phenomena, yet its causes and consequences remain poorly understood. We identify 10,924 individuals with CH amongst 200,453 whole-exome sequenced UK Biobank participants and use their linked genome-wide DNA genotypes to map the landscape of inherited predisposition to CH at unprecedented scale. We increase the number of European-ancestry genome-wide significant (P<5x10-8) germline associations with CH from four to 14 and identify one new transcriptome-wide significant (P<3.2x10-6) association. Genes at new loci implicate DNA damage repair (PARP1, ATM, and CHEK2), hematopoietic stem cell migration/homing (CD164), and myeloid oncogenesis (SETBP1) in CH development. Several associations were CH-subtype specific and, strikingly, variants at TCL1A and CD164 had opposite associations with DNMT3A- versus TET2-mutant CH, mirroring recently reported differences in lifelong behavior of these two most common CH subtypes and proposing important roles for these loci in CH pathogenesis. Using Mendelian randomization, we show, amongst other findings, that smoking and longer leukocyte telomere length are causal risk factors for CH and demonstrate that genetic predisposition to CH increases risks of myeloproliferative neoplasia, several non-hematological malignancies, atrial fibrillation, and blood epigenetic age acceleration.


2022 ◽  
Vol 12 ◽  
Author(s):  
N. Kuzub ◽  
V. Smialkovska ◽  
V. Momot ◽  
V. Moseiko ◽  
O. Lushchak ◽  
...  

Epigenetic clocks are the models, which use CpG methylation levels for the age prediction of an organism. Although there were several epigenetic clocks developed there is a demand for development and evaluation of the relatively accurate and sensitive epigenetic clocks that can be used for routine research purposes. In this study, we evaluated two epigenetic clock models based on the 4 CpG sites and 2 CpG sites in the human genome using the pyrosequencing method for their methylation level estimation. The study sample included 153 people from the Ukrainian population with the age from 0 to 101. Both models showed a high correlation with the chronological age in our study sample (R2 = 0.85 for the 2 CpG model and R2 = 0.92 for the 4 CpG model). We also estimated the accuracy metrics of the age prediction in our study sample. For the age group from 18 to 80 MAD was 5.1 years for the 2 CpG model and 4.1 years for the 4 CpG model. In this regard, we can conclude, that the models evaluated in the study have good age predictive accuracy, and can be used for the epigenetic age evaluation due to the relative simplicity and time-effectiveness.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Rhona A. Beynon ◽  
Suzanne M. Ingle ◽  
Ryan Langdon ◽  
Margaret May ◽  
Andy Ness ◽  
...  

Abstract Background Epigenetic clocks are biomarkers of ageing derived from DNA methylation levels at a subset of CpG sites. The difference between age predicted by these clocks and chronological age, termed “epigenetic age acceleration”, has been shown to predict age-related disease and mortality. We aimed to assess the prognostic value of epigenetic age acceleration and a DNA methylation-based mortality risk score with all-cause mortality in a prospective clinical cohort of individuals with head and neck cancer: Head and Neck 5000. We investigated two markers of intrinsic epigenetic age acceleration (IEAAHorvath and IEAAHannum), one marker of extrinsic epigenetic age acceleration (EEAA), one optimised to predict physiological dysregulation (AgeAccelPheno), one optimised to predict lifespan (AgeAccelGrim) and a DNA methylation-based predictor of mortality (ZhangScore). Cox regression models were first used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for associations of epigenetic age acceleration with all-cause mortality in people with oropharyngeal cancer (n = 408; 105 deaths). The added prognostic value of epigenetic markers compared to a clinical model including age, sex, TNM stage and HPV status was then evaluated. Results IEAAHannum and AgeAccelGrim were associated with mortality risk after adjustment for clinical and lifestyle factors (HRs per standard deviation [SD] increase in age acceleration = 1.30 [95% CI 1.07, 1.57; p = 0.007] and 1.40 [95% CI 1.06, 1.83; p = 0.016], respectively). There was weak evidence that the addition of AgeAccelGrim to the clinical model improved 3-year mortality prediction (area under the receiver operating characteristic curve: 0.80 vs. 0.77; p value for difference = 0.069). Conclusion In the setting of a large, clinical cohort of individuals with head and neck cancer, our study demonstrates the potential of epigenetic markers of ageing to enhance survival prediction in people with oropharyngeal cancer, beyond established prognostic factors. Our findings have potential uses in both clinical and non-clinical contexts: to aid treatment planning and improve patient stratification.


2021 ◽  
Vol 13 ◽  
Author(s):  
Pei-Lun Kuo ◽  
Ann Zenobia Moore ◽  
Frank R. Lin ◽  
Luigi Ferrucci

Objectives: Age-related hearing loss (ARHL) is highly prevalent among older adults, but the potential mechanisms and predictive markers for ARHL are lacking. Epigenetic age acceleration has been shown to be predictive of many age-associated diseases and mortality. However, the association between epigenetic age acceleration and hearing remains unknown. Our study aims to investigate the relationship between epigenetic age acceleration and audiometric hearing in the Baltimore Longitudinal Study of Aging (BLSA).Methods: Participants with both DNA methylation and audiometric hearing measurements were included. The main independent variables are epigenetic age acceleration measures, including intrinsic epigenetic age acceleration—“IEAA,” Hannum age acceleration—“AgeAccelerationResidualHannum,” PhenoAge acceleration—“AgeAccelPheno,” GrimAge acceleration—“AgeAccelGrim,” and methylation-based pace of aging estimation—“DunedinPoAm.” The main dependent variable is speech-frequency pure tone average. Linear regression was used to assess the association between epigenetic age acceleration and hearing.Results: Among the 236 participants (52.5% female), after adjusting for age, sex, race, time difference between measurements, cardiovascular factors, and smoking history, the effect sizes were 0.11 995% CI: (–0.00, 0.23), p = 0.054] for Hannum’s clock, 0.08 [95% CI: (–0.03, 0.19), p = 0.143] for Horvath’s clock, 0.10 [95% CI: (–0.01, 0.21), p = 0.089] for PhenoAge, 0.20 [95% CI: (0.06, 0.33), p = 0.004] for GrimAge, and 0.21 [95% CI: (0.09, 0.33), p = 0.001] for DunedinPoAm.Discussion: The present study suggests that some epigenetic age acceleration measurements are associated with hearing. Future research is needed to study the potential subclinical cardiovascular causes of hearing and to investigate the longitudinal relationship between DNA methylation and hearing.


2021 ◽  
Vol 22 (24) ◽  
pp. 13457
Author(s):  
Neil Saptarshi ◽  
Daniel Green ◽  
Angela Cree ◽  
Andrew Lotery ◽  
Luminita Paraoan ◽  
...  

DNA methylation age (DNAm age) estimation is a powerful biomarker of human ageing. To date, epigenetic clocks have not been evaluated in age-related macular degeneration (AMD). Here, we perform genome-wide DNA methylation analyses in blood of AMD patients with a documented smoking history (14 AMD, 16 Normal), identifying loci of differential methylation (DML) with a relaxed p-value criterion (p ≤ 10−4). We conduct DNAm age analyses using the Horvath-multi tissue, Hannum and Skin & Blood epigenetic clocks in both blood and retinal pigment epithelium (RPE). We perform Ingenuity Pathway Analysis Causal Network Analysis (IPA CNA) on the topmost significantly differentially methylated CpG probes in blood and RPE. Results show poor performance of epigenetic clocks in RPE. Epigenetic age acceleration (EAA) was not observed in AMD. However, we observe positive EAA in blood of smokers, and in smokers with AMD. DML analysis revealed hypomethylation at cg04953735 within RPTOR (p = 6.51 × 10−5; Δβ = −11.95%). IPA CNA in the RPE also identified RPTOR as the putative master regulator, predicted to be inhibited in AMD. In conclusion, this is the first study evaluating an association of epigenetic ageing in AMD. We posit a role for RPTOR as a common master regulator of methylation changes in the RPE in AMD.


Nature Aging ◽  
2021 ◽  
Author(s):  
Alexandre Trapp ◽  
Csaba Kerepesi ◽  
Vadim N. Gladyshev
Keyword(s):  

2021 ◽  
Vol 17 (S5) ◽  
Author(s):  
Yinan Zheng ◽  
Mohamad Habes ◽  
Mitzi M. Gonzales ◽  
Raymond Pomponio ◽  
Ilya M. Nasrallah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document