Small interfering RNAs targeting viral structural envelope protein genes and the 5ʹ-UTR inhibit replication of bovine viral diarrhea virus in MDBK cells

2011 ◽  
Vol 55 (3) ◽  
pp. 279-282 ◽  
Author(s):  
N. MISHRA ◽  
K. RAJUKUMAR ◽  
S. KALAIYARASU ◽  
S. BEHERA ◽  
R. NEMA ◽  
...  
2017 ◽  
Vol 77 ◽  
pp. 23-29 ◽  
Author(s):  
Melina Villalba ◽  
Nivia Canales ◽  
Nicolas Maldonado ◽  
Carola Otth ◽  
Fernanda Fredericksen ◽  
...  

1998 ◽  
Vol 72 (6) ◽  
pp. 4737-4745 ◽  
Author(s):  
Ernesto Mendez ◽  
Nicolas Ruggli ◽  
Marc S. Collett ◽  
Charles M. Rice

ABSTRACT Bovine viral diarrhea virus (BVDV), strain NADL, was originally isolated from an animal with fatal mucosal disease. This isolate is cytopathic in cell culture and produces two forms of NS3-containing proteins: uncleaved NS2-3 and mature NS3. For BVDV NADL, the production of NS3, a characteristic of cytopathic BVDV strains, is believed to be a consequence of an in-frame insertion of a 270-nucleotide cellular mRNA sequence (called cIns) in the NS2 coding region. In this study, we constructed a stable full-length cDNA copy of BVDV NADL in a low-copy-number plasmid vector. As assayed by transfection of MDBK cells, uncapped RNAs transcribed from this template were highly infectious (>105 PFU/μg). The recovered virus was similar in plaque morphology, growth properties, polyprotein processing, and cytopathogenicity to the BVDV NADL parent. Deletion of cIns abolished processing at the NS2/NS3 site and produced a virus that was no longer cytopathic for MDBK cells. This deletion did not affect the efficiency of infectious virus production or viral protein production, but it reduced the level of virus-specific RNA synthesis and accumulation. Thus, cIns not only modulates NS3 production but also upregulates RNA replication relative to an isogenic noncytopathic derivative lacking the insert. These results raise the possibility of a linkage between enhanced BVDV NADL RNA replication and virus-induced cytopathogenicity.


2007 ◽  
Vol 82 (5) ◽  
pp. 2427-2436 ◽  
Author(s):  
Donna M. Tscherne ◽  
Matthew J. Evans ◽  
Margaret R. MacDonald ◽  
Charles M. Rice

ABSTRACT Bovine viral diarrhea virus (BVDV) is a positive-strand RNA virus and a member of the genus Pestivirus in the family Flaviviridae. To identify and characterize essential factors required for BVDV replication, a library expressing random fragments of the BVDV genome was screened for sequences that act as transdominant inhibitors of viral replication by conferring resistance to cytopathic BVDV-induced cell death. We isolated a BVDV-nonpermissive MDBK cell clone that harbored a 1.2-kb insertion spanning the carboxy terminus of the envelope glycoprotein 1 (E1), the envelope glycoprotein E2, and the amino terminus of p7. Confirming the resistance phenotype conferred by this library clone, naïve MDBK cells expressing this fragment were found to be 100- to 1,000-fold less permissive to both cytopathic and noncytopathic BVDV infection compared to parental MDBK cells, although these cells remained fully permissive to vesicular stomatitis virus. This restriction could be overcome by electroporation of BVDV RNA, indicating a block at one or more steps in viral entry prior to translation of the viral RNA. We determined that the E2 ectodomain was responsible for the inhibition to BVDV entry and that this block occurred downstream from BVDV interaction with the cellular receptor CD46 and virus binding, suggesting interference with a yet-unidentified BVDV entry factor.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1157
Author(s):  
Fernando Merwaiss ◽  
María José Pascual ◽  
María Trinidad Pomilio ◽  
María Gabriela Lopez ◽  
Oscar A. Taboga ◽  
...  

Pestivirus envelope protein E2 is crucial to virus infection and accomplishes virus-receptor interaction during entry. However, mapping of E2 residues mediating these interactions has remained unexplored. In this study, to investigate the structure-function relationship for a β-hairpin motif exposed to the solvent in the crystal structure of bovine viral diarrhea virus (BVDV) E2, we designed two amino acidic substitutions that result in a change of electrostatic potential. First, using wild type and mutant E2 expressed as soluble recombinant proteins, we found that the mutant protein had reduced binding to susceptible cells compared to wild type and diminished ability to inhibit BVDV infection, suggesting a lower affinity for BVDV receptors. We then analyzed the effect of β-hairpin mutations in the context of recombinant viral particles. Mutant viruses recovered from cell culture supernatant after transfection of recombinant RNA had almost completely inhibited ability to re-infect susceptible cells, indicating an impact of mutations on BVDV infectivity. Finally, sequential passaging of the mutant virus resulted in the selection of a viral population in which β-hairpin mutations reverted to the wild type sequence to restore infectivity. Taken together, our results show that this conserved region of the E2 protein is critical for the interaction with host cell receptors.


Sign in / Sign up

Export Citation Format

Share Document