scholarly journals Significant decrease of hydride decomposition enthalpy in ordered Mg-In alloys induced by growing hydrogen concentration

2020 ◽  
Vol 58 (03) ◽  
pp. 161-167
Author(s):  
J. Cermak ◽  
L. Kral ◽  
P. Roupcova
2016 ◽  
Vol 2016 (2) ◽  
pp. 163-171
Author(s):  
Georgij Konstantinovich Ignatenko ◽  
Pyotr Ivanovich Gremchenko ◽  
Yurij Mihajlovich Glushkov

2020 ◽  
Vol 86 (8) ◽  
pp. 32-37
Author(s):  
V. V. Larionov ◽  
Xu Shupeng ◽  
V. N. Kudiyarov

Nickel films formed on the surface of zirconium alloys are often used to protect materials against hydrogen penetration. Hydrogen adsorption on nickel is faster since the latter actively interacts with hydrogen, oxidizes and forms a protective film. The goal of the study is to develop a method providing control of hydrogen absorption by nickel films during vacuum-magnetron sputtering and hydrogenation via measuring thermoEMF. Zirconium alloy E110 was saturated from the gas phase with hydrogen at a temperature of 350°C and a pressure of 2 atm. A specialized Rainbow Spectrum unit was used for coating. It is shown that a nickel film present on the surface significantly affects the hydrogen penetration into the alloy. A coating with a thickness of more than 2 μm deposited by magnetron sputtering on the surface of a zirconium alloy with 1% Nb, almost completely protects the alloy against hydrogen penetration. The magnitude of thermoemf depends on the hydrogen concentration in the zirconium alloy and film thickness. An analysis of the hysteresis width of the thermoEMF temperature loop and a method for determining the effective activation energy of the conductivity of a hydrogenated material coated with a nickel film are presented. The results of the study can be used in assessing the hydrogen concentration and, hence, corrosion protection of the material.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1316
Author(s):  
Daniel Mahon ◽  
Gianfranco Claudio ◽  
Philip Eames

To improve the energy efficiency of an industrial process thermochemical energy storage (TCES) can be used to store excess or typically wasted thermal energy for utilisation later. Magnesium carbonate (MgCO3) has a turning temperature of 396 °C, a theoretical potential to store 1387 J/g and is low cost (~GBP 400/1000 kg). Research studies that assess MgCO3 for use as a medium temperature TCES material are lacking, and, given its theoretical potential, research to address this is required. Decomposition (charging) tests and carbonation (discharging) tests at a range of different temperatures and pressures, with selected different gases used during the decomposition tests, were conducted to gain a better understanding of the real potential of MgCO3 for medium temperature TCES. The thermal decomposition (charging) of MgCO3 has been investigated using thermal analysis techniques including simultaneous thermogravimetric analysis and differential scanning calorimetry (TGA/DSC), TGA with attached residual gas analyser (RGA) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (up to 650 °C). TGA, DSC and RGA data have been used to quantify the thermal decomposition enthalpy from each MgCO3.xH2O thermal decomposition step and separate the enthalpy from CO2 decomposition and H2O decomposition. Thermal analysis experiments were conducted at different temperatures and pressures (up to 40 bar) in a CO2 atmosphere to investigate the carbonation (discharging) and reversibility of the decarbonation–carbonation reactions for MgCO3. Experimental results have shown that MgCO3.xH2O has a three-step thermal decomposition, with a total decomposition enthalpy of ~1050 J/g under a nitrogen atmosphere. After normalisation the decomposition enthalpy due to CO2 loss equates to 1030–1054 J/g. A CO2 atmosphere is shown to change the thermal decomposition (charging) of MgCO3.xH2O, requiring a higher final temperature of ~630 °C to complete the decarbonation. The charging input power of MgCO3.xH2O was shown to vary from 4 to 8136 W/kg with different isothermal temperatures. The carbonation (discharging) of MgO was found to be problematic at pressures up to 40 bar in a pure CO2 atmosphere. The experimental results presented show MgCO3 has some characteristics that make it a candidate for thermochemical energy storage (high energy storage potential) and other characteristics that are problematic for its use (slow discharge) under the experimental test conditions. This study provides a comprehensive foundation for future research assessing the feasibility of using MgCO3 as a medium temperature TCES material. Future research to determine conditions that improve the carbonation (discharging) process of MgO is required.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 106
Author(s):  
Daniela Platošová ◽  
Jiří Rusín ◽  
Jan Platoš ◽  
Kateřina Smutná ◽  
Roman Buryjan

The paper presents the results of a laboratory experiment of mesophilic single-stage anaerobic digestion performed to verify the possibility of early detection of process instability and reactor overload by evaluating the course of dissolved hydrogen concentration of the main intermediate. The digestion process was run in a Terrafors IS rotary drum bioreactor for 230 days. The substrate dosed on weekdays was food leftovers from the university canteen. At an average temperature of 37 °C, an organic loading of volatiles of 0.858 kg m−3 day−1 and a theoretical retention time of 259 days, biogas production of 0.617 Nm3 kg VS−1 was achieved with a CH4 content of 51.7 vol. %. The values of the established FOS/TAC stability indicator ranged from 0.26 to 11.4. The highest value was reached when the reactor was overloaded. The dissolved hydrogen concentration measured by the amperometric microsensor ranged from 0.039–0.425 mg dm−3. Data were statistically processed using Pearson’s correlation coefficient. The correlation of the hydrogen concentration with other parameters such as the concentration of organic acids was evaluated. The value of Pearson’s correlation coefficient was 0.331 and corresponded to a p-value of 0. The results confirmed a very low limit of the hydrogen concentration at which the microbial culture, especially methanogens, was already overloaded. The amperometric microsensor proved to be rather unsuitable for operational applications due to insufficient sensitivity and short service life. The newly designed ratio of dissolved hydrogen concentration to neutralizing capacity was tested but did not work significantly better than the established FOS/TAC stability indicator.


2020 ◽  
Vol 29 (7) ◽  
pp. 078104
Author(s):  
Qingyu Zhang ◽  
Dongke Sun ◽  
Shunhu Zhang ◽  
Hui Wang ◽  
Mingfang Zhu

Author(s):  
Frank Y. Cheng

A thermodynamic model was developed to determine the interactions of hydrogen, stress and anodic dissolution at the crack-tip during near-neutral pH stress corrosion cracking in pipelines. By analyzing the free-energy of the steel in the presence and absence of hydrogen and stress, it is demonstrated that a synergism of hydrogen and stress promotes the cracking of the steel. The enhanced hydrogen concentration in the stressed steel significantly accelerates the crack growth. The quantitative prediction of the crack growth rate in near-neutral pH environment is based on the determination of the effect of hydrogen on the anodic dissolution rate in the absence of stress, the effect of stress on the anodic dissolution rate in the absence of hydrogen, the synergistic effect of hydrogen and stress on the anodic dissolution rate at the crack-tip and the effect of the variation of hydrogen concentration on the anodic dissolution rate.


Sign in / Sign up

Export Citation Format

Share Document