Asymptotic Expansions II

1957 ◽  
Vol 9 ◽  
pp. 194-209 ◽  
Author(s):  
Leo Moser ◽  
Max Wyman

In a previous paper (1) the authors considered the problem of finding an asymptotic formula for numbers or functions Bn,m whose generating function is of the form(1.1),where Pm(x) is a polynomial of degree m in x given by(1.2), am≠0.The above-mentioned paper contained the restriction that ak ≥ 0.

1905 ◽  
Vol 40 (3) ◽  
pp. 615-629
Author(s):  
Thomas Muir

(1) This is a subject to which very little study has been directed. The first to enunciate any proposition regarding it was Jacobi; but the solitary result which he reached received no attention from mathematicians,—certainly no fruitful attention,—during seventy years following the publication of it.Jacobi was concerned with a problem regarding the partition of a fraction with composite denominator (u1 − t1) (u2 − t2) … into other fractions whose denominators are factors of the original, where u1, u2, … are linear homogeneous functions of one and the same set of variables. The specific character of the partition was only definable by viewing the given fraction (u1−t1)−1 (u2−t2)−1…as expanded in series form, it being required that each partial fraction should be the aggregate of a certain set of terms in this series. Of course the question of the order of the terms in each factor of the original denominator had to be attended to at the outset, since the expansion for (a1x+b1y+c1z−t)−1 is not the same as for (b1y+c1z+a1x−t)−1. Now one general proposition to which Jacobi was led in the course of this investigation was that the coefficient ofx1−1x2−1x3−1…in the expansion ofy1−1u2−1u3−1…, whereis |a1b2c3…|−1, provided that in energy case the first term of uris that containing xr.


1993 ◽  
Vol 2 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Philippe Flajolet ◽  
Zhicheng Gao ◽  
Andrew Odlyzko ◽  
Bruce Richmond

The number, , of rooted plane binary trees of height ≤ h with n internal nodes is shown to satisfyuniformly for δ−1(log n)−1/2 ≤ β ≤ δ(log n)1/2, where and δ is a positive constant. An asymptotic formula for is derived for h = cn, where 0 < c < 1. Bounds for are also derived for large and small heights. The methods apply to any simple family of trees, and the general asymptotic results are stated.


2014 ◽  
Vol 23 (6) ◽  
pp. 1057-1086 ◽  
Author(s):  
PETER J. GRABNER ◽  
ARNOLD KNOPFMACHER ◽  
STEPHAN WAGNER

We consider statistical properties of random integer partitions. In order to compute means, variances and higher moments of various partition statistics, one often has to study generating functions of the form P(x)F(x), where P(x) is the generating function for the number of partitions. In this paper, we show how asymptotic expansions can be obtained in a quasi-automatic way from expansions of F(x) around x = 1, which parallels the classical singularity analysis of Flajolet and Odlyzko in many ways. Numerous examples from the literature, as well as some new statistics, are treated via this methodology. In addition, we show how to compute further terms in the asymptotic expansions of previously studied partition statistics.


1984 ◽  
Vol 36 (5) ◽  
pp. 924-960 ◽  
Author(s):  
R. Wong ◽  
J. P. Mcclure

A large number of important integral transforms, such as Laplace, Fourier sine and cosine, Hankel, Stieltjes, and Riemann- Liouville fractional integral transforms, can be put in the form1.1where f(t) and the kernel, h(t), are locally integrable functions on (0,∞), and x is a positive parameter. Recently, two important techniques have been developed to give asymptotic expansions of I(x) as x → + ∞ or x → 0+. One method relies heavily on the theory of Mellin transforms [8] and the other is based on the use of distributions [24]. Here, of course, the integral I(x) is assumed to exist in some ordinary sense.If the above integral does not exist in any ordinary sense, then it may be regarded as an integral transform of a distribution (generalized function). There are mainly two approaches to extend the classical integral transforms to distributions.


1969 ◽  
Vol 12 (3) ◽  
pp. 311-320 ◽  
Author(s):  
Kenneth S. Williams

In 1957, Mordell [3] provedTheorem. If p is an odd prime there exist non-negative integers x, y ≤ A p3/4 log p, where A is a positive absolute constant, such that(1.1)provided (abc, p) = 1.Recently Smith [5] has obtained a sharp asymptotic formula for the sum where r(n) denotes the number of representations of n as the sum of two squares.


1991 ◽  
Vol 43 (3) ◽  
pp. 506-525 ◽  
Author(s):  
Kim Hughes

For each integer r we define the sequence pr(n) by We note that p-1(n) = p(n), the ordinary partition function. On account of this some authors set r = — k to make positive values of k correspond to positive powers of the generating function for p(n): We follow this convention here. In [3], Atkin proved the following theorem.


1922 ◽  
Vol 41 ◽  
pp. 82-93
Author(s):  
T. M. MacRobert

Associated Legendre Functions as Integrals involving Bessel Functions. Let,where C denotes a contour which begins at −∞ on the real axis, passes positively round the origin, and returns to −∞, amp λ=−π initially, and R(z)>0, z being finite and ≠1. [If R(z)>0 and z is finite, then R(z±)>0.] Then if I−m (λ) be expanded in ascending powers of λ, and if the resulting expression be integrated term by term, it is found that


2019 ◽  
Vol 149 (03) ◽  
pp. 831-847 ◽  
Author(s):  
Bao-Xuan Zhu

AbstractGiven a sequence of polynomials$\{x_k(q)\}_{k \ges 0}$, define the transformation$$y_n(q) = a^n\sum\limits_{i = 0}^n {\left( \matrix{n \cr i} \right)} b^{n-i}x_i(q)$$for$n\ges 0$. In this paper, we obtain the relation between the Jacobi continued fraction of the ordinary generating function ofyn(q) and that ofxn(q). We also prove that the transformation preservesq-TPr+1(q-TP) property of the Hankel matrix$[x_{i+j}(q)]_{i,j \ges 0}$, in particular forr= 2,3, implying ther-q-log-convexity of the sequence$\{y_n(q)\}_{n\ges 0}$. As applications, we can give the continued fraction expressions of Eulerian polynomials of typesAandB, derangement polynomials typesAandB, general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. In addition, we also prove the strongq-log-convexity of derangement polynomials typeB, Dowling polynomials and Tanny-geometric polynomials and 3-q-log-convexity of general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. We also present a new proof of the result of Pólya and Szegö about the binomial convolution preserving the Stieltjes moment property and a new proof of the result of Zhu and Sun on the binomial transformation preserving strongq-log-convexity.


1940 ◽  
Vol 32 ◽  
pp. vii-xii ◽  
Author(s):  
A. Erdelyi ◽  
I. M. H. Etherington

§ 1. The preceding Note has shown the connection between the partition of a convex polygon by non-crossing diagonals and the insertion of brackets in a product, the latter being more commonly represented by the construction of a tree. It was shown that the enumeration of these entities leads to a generating function y = f(x) which satisfies an algebraic equation of the typeIn simple cases, the solution of the equation was found as a power series in x, the coefficient An of xn giving the required number of partitions of an (n + 1)-gon.


2017 ◽  
Vol 153 (8) ◽  
pp. 1622-1657 ◽  
Author(s):  
Oleksiy Klurman

We give an asymptotic formula for correlations $$\begin{eqnarray}\mathop{\sum }_{n\leqslant x}f_{1}(P_{1}(n))f_{2}(P_{2}(n))\cdots f_{m}(P_{m}(n)),\end{eqnarray}$$ where $f,\ldots ,f_{m}$ are bounded ‘pretentious’ multiplicative functions, under certain natural hypotheses. We then deduce several desirable consequences. First, we characterize all multiplicative functions $f:\mathbb{N}\rightarrow \{-1,+1\}$ with bounded partial sums. This answers a question of Erdős from $1957$ in the form conjectured by Tao. Second, we show that if the average of the first divided difference of the multiplicative function is zero, then either $f(n)=n^{s}$ for $\operatorname{Re}(s)<1$ or $|f(n)|$ is small on average. This settles an old conjecture of Kátai. Third, we apply our theorem to count the number of representations of $n=a+b$, where $a,b$ belong to some multiplicative subsets of $\mathbb{N}$. This gives a new ‘circle method-free’ proof of a result of Brüdern.


Sign in / Sign up

Export Citation Format

Share Document