On the Structure of Q2(G) for Finitely Generated Groups

1973 ◽  
Vol 25 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Gerald Losey

Let G be a group, ZG its integral group ring and Δ = Δ(G) the augmentation ideal of ZG. Denote by Gi the ith term of the lower central series of G. Following Passi [3], we set . It is well-known that (see, for example [1]). In [3] Passi shows that if G is an abelian group then , the second symmetric power of G.

2005 ◽  
Vol 15 (05n06) ◽  
pp. 1061-1073
Author(s):  
ROMAN MIKHAILOV ◽  
INDER BIR S. PASSI

We study certain subgroups of the Schur multiplicator of a group G. These subgroups are related to the identification of subgroups of G determind by ideals in its integral group ring ℤ[G]. Suitably defined transfinite powers of the augmentation ideal of ℤ[G] provide an increasing transfinite filtration of the Schur multiplicator of G. We investigate the relationship of this filtration with the transfinite lower central series of groups which are HZ-local in the sense of Bousfield.


1979 ◽  
Vol 85 (2) ◽  
pp. 247-252 ◽  
Author(s):  
Robert Sandling ◽  
Ken-Ichi Tahara

Let G be a group with the lower central seriesLetwhere Σ runs over all non-negative integers a1, a2,…, an such that and is the aith symmetric power of the abelian group Gi/Gi+1 whereLet I (G) be the augmentation ideal of G in , the group ring of G over . Define the additive group Qn (G) = In (G) / In+1 (G) for any n ≥ 1. Then it is well known that Q1(G) ≅ W1(G) for any group G. Losey (4,5) proved that Q2(G) ≅ W2(G) for any finitely generated group G. Furthermore recently Tahara(12) proved that Q3(G) is a certain precisely defined quotient of W3(G) for any finite group G.


Author(s):  
Inder Bir S. Passi ◽  
Lekh Raj Vermani

Let G be an Abelian group, the symmetric algebra of G and the associated graded ring of the integral group ring ZG, where (AG denotes the augmentation ideal of ZG). Then there is a natural epimorphism (4)which is given on the nth component byIn general θ is not an isomorphism. In fact Bachmann and Grünenfelder(1) have shown that for finite Abelian G, θ is an isomorphism if and only if G is cyclic. Thus it is of interest to investigate ker θn for finite Abelian groups. In view of proposition 3.25 of (3) it is enough to consider finite Abelian p-groups.


1979 ◽  
Vol 85 (2) ◽  
pp. 261-270 ◽  
Author(s):  
Gerald Losey ◽  
Nora Losey

1. LetGbe a group,ZGits integral group ring and Δ = ΔGthe augmentation idealZGBy anaugmentation quotientofGwe mean any one of theZG-moduleswheren, r≥ 1. In recent years there has been a great deal of interest in determining the abelian group structure of the augmentation quotientsQn(G) =Qn,1(G) and(see (1, 2, 7, 8, 9, 12, 13, 14, 15)). Passi(8) has shown that in order to determineQn(G) andPn(G) for finiteGit is sufficient to assume thatGis ap-group. Passi(8, 9) and Singer(13, 14) have obtained information on the structure of these quotients for certain classes of abelianp-groups. However little seems to be known of a quantitative nature for nonabelian groups. In (2) Bachmann and Grünenfelder have proved the following qualitative result: ifGis a finite group then there exist natural numbersn0and π such thatQn(G) ≅Qn+π(G) for alln≥n0; ifGωis the nilpotent residual ofGandG/Gωhas classcthen π divides l.c.m. {1, 2, …,c}. There do not appear to be any examples in the literature of this periodic behaviour forc> 1. One of goals here is to present such examples. These examples will be from the class of finitep-groups in which the lower central series is anNp-series.


1977 ◽  
Vol 17 (1) ◽  
pp. 53-89 ◽  
Author(s):  
David Shield

Let G be a group with a normal subgroup H whose index is a power of a prime p, and which is nilpotent with exponent a power of p. Gilbert Baumslag (Proc. Cambridge Philos. Soc. 55 (1959), 224–231) has shown that such a group is nilpotent; the main result of this paper is an upper bound on its nilpotency class in terms of parameters of H and G/H. It is shown that this bound is attained whenever G is a wreath product and H its base group.A descending central series, here called the cpp-series, is involved in these calculations more closely than is the lower central series, and the class of the wreath product in terms of this series is also found.Two tools used to obtain the main result, namely a useful basis for a finite p-group and a result about the augmentation ideal of the integer group ring of a finite p-group, may have some independent interest. The main result is applied to the construction of some two-generator groups of large nilpotency class with exponents 8, 9, and 25.


2012 ◽  
Vol 19 (01) ◽  
pp. 137-148 ◽  
Author(s):  
Qingxia Zhou ◽  
Hong You

For the generalized quaternion group G, this article deals with the problem of presenting the nth power Δn(G) of the augmentation ideal Δ (G) of the integral group ring ZG. The structure of Qn(G)=Δn(G)/Δn+1(G) is obtained.


1972 ◽  
Vol 15 (4) ◽  
pp. 529-534 ◽  
Author(s):  
I. Hughes ◽  
K. R. Pearson

We denote by ZG the integral group ring of the finite group G. We call ±g, for g in G, a trivial unit of ZG. For G abelian, Higman [4] (see also [3, p. 262 ff]) showed that every unit of finite order in ZG is trivial. For arbitrary finite G (indeed, for a torsion group G, not necessarily finite), Higman [4] showed that every unit in ZG is trivial if and only if G is(i) abelian and the order of each element divides 4, or(ii) abelian and the order of each element divides 6, or(iii) the direct product of the quaternion group of order 8 and an abelian group of exponent 2.


Author(s):  
Robert Sandling

Associated with, the powers of the augmentation ideal are the dimension subgroups. In the integral group ring case, they have long been conjectured to be the terms of the lower central series. This paper investigates the subgroups associated with the chain of ideals dual to the chain of powers of the augmentation ideal. The study is reduced to the case of the modular group rings of p-groups. The subgroups are calculated for Abelian p-groups, p odd. They appear in the upper central series of wreath products and provide a new criterion for the nilpotence of an arbitrary wreath product. The nilpotence class of wreath products is considered here as well; calculations and bounds are given; in particular, a new method of computing the class of the Sylow p-subgroups of the symmetric group arises.


Sign in / Sign up

Export Citation Format

Share Document