On the Convergence of a Class of Nearly Alternating Series

2007 ◽  
Vol 59 (1) ◽  
pp. 85-108
Author(s):  
J. H. Foster ◽  
Monika Serbinowska

AbstractLet C be the class of convex sequences of real numbers. The quadratic irrational numbers can be partitioned into two types as follows. If α is of the first type and (ck) ∈ C, then ∑(—1)⎿ck⏌ converges if and only if ck log k → 0. If α is of the second type and (ck) ∈ C, then ∑(—1)⎿ck⏌ converges if and only if ∑ ck/k converges. An example of a quadratic irrational of the first type is and an example of the second type is . The analysis of this problem relies heavily on the representation of α as a simple continued fraction and on properties of the sequences of partial sums and double partial sums .

Author(s):  
Christophe Reutenauer

Basic theory of continued fractions: finite continued fractions (for rational numbers) and infinite continued fractions (for irrational numbers). This also includes computation of the quadratic number with a given periodic continued fraction, conjugate quadratic numbers, and approximation of reals and convergents of continued fractions. The chapter then takes on quadratic bounds for the error term and Legendre’s theorem, and reals having the same expansion up to rank n. Next, it discusses Lagrange number and its characterization as an upper limit, and equivalence of real numbers (equivalent numbers have the same Lagrange number). Finally, it covers ordering real numbers by alternating lexicographical order on continued fractions.


2015 ◽  
Vol 52 (3) ◽  
pp. 316-336
Author(s):  
Narakorn Rompurk Kanasri ◽  
Vichian Laohakosol ◽  
Tawat Changphas

A remarkable class of quadratic irrational elements having both explicit Engel series and continued fraction expansions in the field of Laurent series, mimicking the case of real numbers discovered by Sierpiński and later extended by Tamura, is constructed. Linear integer-valued polynomials which can be applied to construct such class are determined. Corresponding results in the case of real numbers are mentioned.


Author(s):  
Kunle Adegoke

We study various properties of the polygonal numbers; such as their recurrence relations; fundamental identities; weighted binomial and ordinary sums; partial sums and generating functions of their powers; and a continued fraction representation for them. A feature of our results is that they are presented naturally in terms of the polygonal numbers themselves and not in terms of arbitrary integers; unlike what obtains in most literature.


2002 ◽  
Vol 45 (3) ◽  
pp. 653-671 ◽  
Author(s):  
J. L. Davison

AbstractPrecise bounds are given for the quantity$$ L(\alpha)=\frac{\limsup_{m\rightarrow\infty}(1/m)\ln q_m}{\liminf_{m\rightarrow\infty}(1/m)\ln q_m}, $$where $(q_m)$ is the classical sequence of denominators of convergents to the continued fraction $\alpha=[0,u_1,u_2,\dots]$ and $(u_m)$ is assumed bounded, with a distribution.If the infinite word $\bm{u}=u_1u_2\dots$ has arbitrarily large instances of segment repetition at or near the beginning of the word, then we quantify this property by means of a number $\gamma$, called the segment-repetition factor.If $\alpha$ is not a quadratic irrational, then we produce a specific sequence of quadratic irrational approximations to $\alpha$, the rate of convergence given in terms of $L$ and $\gamma$. As an application, we demonstrate the transcendence of some continued fractions, a typical one being of the form $[0,u_1,u_2,\dots]$ with $u_m=1+\lfloor m\theta\rfloor\Mod n$, $n\geq2$, and $\theta$ an irrational number which satisfies any of a given set of conditions.AMS 2000 Mathematics subject classification: Primary 11A55. Secondary 11B37


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 788
Author(s):  
Heewon Chung ◽  
Myungsun Kim ◽  
Ahmad Al Badawi ◽  
Khin Mi Mi Aung ◽  
Bharadwaj Veeravalli

This work is mainly interested in ensuring users’ privacy in asymmetric computing, such as cloud computing. In particular, because lots of user data are expressed in non-integer data types, privacy-enhanced applications built on fully homomorphic encryption (FHE) must support real-valued comparisons due to the ubiquity of real numbers in real-world applications. However, as FHE schemes operate in specific domains, such as that of congruent integers, most FHE-based solutions focus only on homomorphic comparisons of integers. Attempts to overcome this barrier can be grouped into two classes. Given point numbers in the form of approximate real numbers, one class of solution uses a special-purpose encoding to represent the point numbers, whereas the other class constructs a dedicated FHE scheme to encrypt point numbers directly. The solutions in the former class may provide depth-efficient arithmetic (i.e., logarithmic depth in the size of the data), but not depth-efficient comparisons between FHE-encrypted point numbers. The second class may avoid this problem, but it requires the precision of point numbers to be determined before the FHE setup is run. Thus, the precision of the data cannot be controlled once the setup is complete. Furthermore, because the precision accuracy is closely related to the sizes of the encryption parameters, increasing the precision of point numbers results in increasing the sizes of the FHE parameters, which increases the sizes of the public keys and ciphertexts, incurring more expensive computation and storage. Unfortunately, this problem also occurs in many of the proposals that fall into the first class. In this work, we are interested in depth-efficient comparison over FHE-encrypted point numbers. In particular, we focus on enabling the precision of point numbers to be manipulated after the system parameters of the underlying FHE scheme are determined, and even after the point numbers are encrypted. To this end, we encode point numbers in continued fraction (CF) form. Therefore, our work lies in the first class of solutions, except that our CF-based approach allows depth-efficient homomorphic comparisons (more precisely, the complexity of the comparison is O ( log κ + log n ) for a number of partial quotients n and their bit length κ , which is normally small) while allowing users to determine the precision of the encrypted point numbers when running their applications. We develop several useful applications (e.g., sorting) that leverage our CF-based homomorphic comparisons.


Author(s):  
Алексеенко ◽  
A. Alekseenko ◽  
Лихачева ◽  
M. Likhacheva

The article is devoted to the study of the peculiarities of real numbers in the discipline "Algebra and analysis" in the secondary school. The theme of "Real numbers" is not easy to understand and often causes difficulties for students. However, the study of this topic is now being given enough attention and time. The consequence is a lack of understanding of students and school-leavers, what constitutes the real numbers, irrational numbers. At the same time the notion of a real number is required for further successful study of mathematics. To improve the efficiency of studying the topic and form a clear idea about the different numbers offered to add significantly to the material of modern textbooks, increase the number of hours in the study of real numbers, as well as to include in the school course of algebra topics "Complex numbers" and "Algebraic structures".


Sign in / Sign up

Export Citation Format

Share Document