On Prime Rings with Ascending Chain Condition on Annihilator Right Ideals and Nonzero Infective Right Ideals

1971 ◽  
Vol 14 (3) ◽  
pp. 443-444 ◽  
Author(s):  
Kwangil Koh ◽  
A. C. Mewborn

If I is a right ideal of a ring R, I is said to be an annihilator right ideal provided that there is a subset S in R such thatI is said to be injective if it is injective as a submodule of the right regular R-module RR. The purpose of this note is to prove that a prime ring R (not necessarily with 1) which satisfies the ascending chain condition on annihilator right ideals is a simple ring with descending chain condition on one sided ideals if R contains a nonzero right ideal which is injective.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Ashraf ◽  
Sajad Ahmad Pary ◽  
Mohd Arif Raza

AbstractLet {\mathscr{R}} be a prime ring, {\mathscr{Q}_{r}} the right Martindale quotient ring of {\mathscr{R}} and {\mathscr{C}} the extended centroid of {\mathscr{R}}. In this paper, we discuss the relationship between the structure of prime rings and the behavior of skew derivations on multilinear polynomials. More precisely, we investigate the m-potent commutators of skew derivations involving multilinear polynomials, i.e.,\big{(}[\delta(f(x_{1},\ldots,x_{n})),f(x_{1},\ldots,x_{n})]\big{)}^{m}=[% \delta(f(x_{1},\ldots,x_{n})),f(x_{1},\ldots,x_{n})],where {1<m\in\mathbb{Z}^{+}}, {f(x_{1},x_{2},\ldots,x_{n})} is a non-central multilinear polynomial over {\mathscr{C}} and δ is a skew derivation of {\mathscr{R}}.


2017 ◽  
Vol 82 (2) ◽  
pp. 576-589 ◽  
Author(s):  
KOSTAS HATZIKIRIAKOU ◽  
STEPHEN G. SIMPSON

AbstractLetSbe the group of finitely supported permutations of a countably infinite set. Let$K[S]$be the group algebra ofSover a fieldKof characteristic 0. According to a theorem of Formanek and Lawrence,$K[S]$satisfies the ascending chain condition for two-sided ideals. We study the reverse mathematics of this theorem, proving its equivalence over$RC{A_0}$(or even over$RCA_0^{\rm{*}}$) to the statement that${\omega ^\omega }$is well ordered. Our equivalence proof proceeds via the statement that the Young diagrams form a well partial ordering.


2012 ◽  
Vol 49 (3) ◽  
pp. 366-389 ◽  
Author(s):  
Edmond Lee

The smallest monoid containing a 2-testable semigroup is defined to be a 2-testable monoid. The well-known Brandt monoid B21 of order six is an example of a 2-testable monoid. The finite basis problem for 2-testable monoids was recently addressed and solved. The present article continues with the investigation by describing all monoid varieties generated by 2-testable monoids. It is shown that there are 28 such varieties, all of which are finitely generated and precisely 19 of which are finitely based. As a comparison, the sub-variety lattice of the monoid variety generated by the monoid B21 is examined. This lattice has infinite width, satisfies neither the ascending chain condition nor the descending chain condition, and contains non-finitely generated varieties.


1988 ◽  
Vol 11 (2) ◽  
pp. 239-242 ◽  
Author(s):  
Howard E. Bell

Extending a result of Putcha and Yaqub, we prove that a non-nil ring must be finite if it has both ascending chain condition and descending chain condition on non-nil subrings. We also prove that a periodic ring with only finitely many non-central zero divisors must be either finite or commutative.


2020 ◽  
Vol 57 (3) ◽  
pp. 290-297
Author(s):  
Abdullah Alahmari ◽  
Falih A. Aldosray ◽  
Mohamed Mabrouk

AbstractLet 𝔄 be a unital Banach algebra and ℜ its Jacobson radical. This paper investigates Banach algebras satisfying some chain conditions on closed ideals. In particular, it is shown that a Banach algebra 𝔄 satisfies the descending chain condition on closed left ideals then 𝔄/ℜ is finite dimensional. We also prove that a C*-algebra satisfies the ascending chain condition on left annihilators if and only if it is finite dimensional. Moreover, other auxiliary results are established.


2014 ◽  
Vol 57 (2) ◽  
pp. 323-341
Author(s):  
ALEX BAILEY ◽  
VICTORIA GOULD ◽  
MIKLÓS HARTMANN ◽  
JAMES RENSHAW ◽  
LUBNA SHAHEEN

AbstractA monoid S satisfies Condition (A) if every locally cyclic left S-act is cyclic. This condition first arose in Isbell's work on left perfect monoids, that is, monoids such that every left S-act has a projective cover. Isbell showed that S is left perfect if and only if every cyclic left S-act has a projective cover and Condition (A) holds. Fountain built on Isbell's work to show that S is left perfect if and only if it satisfies Condition (A) together with the descending chain condition on principal right ideals, MR. We note that a ring is left perfect (with an analogous definition) if and only if it satisfies MR. The appearance of Condition (A) in this context is, therefore, monoid specific. Condition (A) has a number of alternative characterisations, in particular, it is equivalent to the ascending chain condition on cyclic subacts of any left S-act. In spite of this, it remains somewhat esoteric. The first aim of this paper is to investigate the preservation of Condition (A) under basic semigroup-theoretic constructions. Recently, Khosravi, Ershad and Sedaghatjoo have shown that every left S-act has a strongly flat or Condition (P) cover if and only if every cyclic left S-act has such a cover and Condition (A) holds. Here we find a range of classes of S-acts $\mathcal{C}$ such that every left S-act has a cover from $\mathcal{C}$ if and only if every cyclic left S-act does and Condition (A) holds. In doing so we find a further characterisation of Condition (A) purely in terms of the existence of covers of a certain kind. Finally, we make some observations concerning left perfect monoids and investigate a class of monoids close to being left perfect, which we name left$\mathcal{IP}$a-perfect.


1965 ◽  
Vol 8 (1) ◽  
pp. 29-32 ◽  
Author(s):  
Kwangil Koh

A ring R with unity is called right (left) self injective if the right (left) R-module R is injective [7]. The purpose of this note is to prove the following: Let R be a prime ring with a maximal annihilator right (left) ideal. If R is right (left) self injective then R is a primitive ring with a minimal one-sided ideal. If R satisfies the maximum condition on annihilator right (left) ideals and R is right (left) self injective then R is a simple ring with the minimum condition on one-sided ideals.


1979 ◽  
Vol 31 (3) ◽  
pp. 558-564 ◽  
Author(s):  
Joe W. Fisher

This paper establishes the following combinatorial result concerning the automorphisms of a modular lattice.THEOREM. Let M be a modular lattice and let G be a finite subgroup of the automorphism group of M. If the sublattice, MG, of (common) fixed points (under G) satisfies any of a large class of chain conditions, then M satisfies the same chain condition. Some chain conditions in this class are the following: the ascending chain condition; the descending chain condition; Krull dimension; the property of having no uncountable chains, no chains order-isomorphic to the rational numbers; etc.


1972 ◽  
Vol 13 (4) ◽  
pp. 433-446 ◽  
Author(s):  
T. W. Atterton

Let B be an associative ring with identity, A a subring of B containing the identity of B. If B is commutative then it is customary to define an element b of B to be integral over A if it satisties an equation of the form for some a1, a2, …, an A. This definition does not generalize readily to the case when B is non-commutative. Van der Waerden ([11], p. 75) defines b ∈ B to be integral over A if all powers of b belong to a finite A-module. This definition is quite satisfactory when A satisfies the ascending chain condition for left ideals, but in the general case this type of integrity is not necessarily transitive, even when B is commutative. Krull [6] calls an element b ∈ B which satisfies the above condition almost integral over A (but he only considers the commutative case). The subset Ā of B consisting of all almost integral elements over A is called the complete integral closure of A in B. If Ā = A, A is said to be completely integrally closed in B. More recently (in [3]), Gilmer and Heinzer (see also Bourbaki, [1]) have discussed these properties in the commutative case and have shown that the complete integral closure of A in B need not be completely integrally closed in B. If B is not commutative, the set A of elements of B almost integral over A, may not even form a ring. In [5] p. 122, Jacobson uses a definition equivalent to Van der Waerden's for the non-commutative case but the definition applies only for a very restricted class of rings.


Sign in / Sign up

Export Citation Format

Share Document