Complements of Minimal Ideals in Solvable Lie Rings

1980 ◽  
Vol 23 (3) ◽  
pp. 363-366
Author(s):  
Ernest L. Stitzinger

AbstractConditions for the existence and conjugacy of complements of certain minimal ideals of solvable Lie algebras over a Noetherian ring R are considered. Let L be a solvable Lie algebra and A be a minimal ideal of L. If L/A is nilpotent and L is not nilpotent then A has a complement in L, all such complements are conjugate and self-normalizing and if C is a complement then there exists an x∈L such that C = {y∈L; yadnx = 0 for some n = 1, 2,…}. A similar result holds if A is self-centralizing and a finitely generated R-module.

2005 ◽  
Vol 12 (03) ◽  
pp. 497-518 ◽  
Author(s):  
Rutwig Campoamor-Stursberg

A corrected and completed list of six dimensional real Lie algebras with five dimensional nilradical is presented. Their invariants for the coadjoint representation are computed and some results on the invariants of solvable Lie algebras in arbitrary dimension whose nilradical has codimension one are also given. Specifically, it is shown that any rank one solvable Lie algebra of dimension n without invariants determines a family of (n+2k)-dimensional algebras with the same property.


2003 ◽  
Vol 12 (05) ◽  
pp. 589-604
Author(s):  
Hideaki Nishihara

Weight systems are constructed with solvable Lie algebras and their infinite dimensional representations. With a Heisenberg Lie algebra and its polynomial representations, the derived weight system vanishes on Jacobi diagrams with positive loop-degree on a circle, and it is proved that the derived knot invariant is the inverse of the Alexander-Conway polynomial.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050095
Author(s):  
Vesselin Drensky ◽  
Şehmus Fındık

Let [Formula: see text] be the polynomial algebra in [Formula: see text] variables over a field [Formula: see text] of characteristic 0. The classical theorem of Weitzenböck from 1932 states that for linear locally nilpotent derivations [Formula: see text] (known as Weitzenböck derivations), the algebra of constants [Formula: see text] is finitely generated. When the Weitzenböck derivation [Formula: see text] acts on the polynomial algebra [Formula: see text] in [Formula: see text] variables by [Formula: see text], [Formula: see text], [Formula: see text], Nowicki conjectured that [Formula: see text] is generated by [Formula: see text] and [Formula: see text] for all [Formula: see text]. There are several proofs based on different ideas confirming this conjecture. Considering arbitrary Weitzenböck derivations of the free [Formula: see text]-generated metabelian Lie algebra [Formula: see text], with few trivial exceptions, the algebra [Formula: see text] is not finitely generated. However, the vector subspace [Formula: see text] of the commutator ideal [Formula: see text] of [Formula: see text] is finitely generated as a [Formula: see text]-module. In this paper, we study an analogue of the Nowicki conjecture in the Lie algebra setting and give an explicit set of generators of the [Formula: see text]-module [Formula: see text].


2019 ◽  
Vol 71 (1) ◽  
pp. 53-71
Author(s):  
Peter Mayr ◽  
Nik Ruškuc

Abstract Let $K$ be a commutative Noetherian ring with identity, let $A$ be a $K$-algebra and let $B$ be a subalgebra of $A$ such that $A/B$ is finitely generated as a $K$-module. The main result of the paper is that $A$ is finitely presented (resp. finitely generated) if and only if $B$ is finitely presented (resp. finitely generated). As corollaries, we obtain: a subring of finite index in a finitely presented ring is finitely presented; a subalgebra of finite co-dimension in a finitely presented algebra over a field is finitely presented (already shown by Voden in 2009). We also discuss the role of the Noetherian assumption on $K$ and show that for finite generation it can be replaced by a weaker condition that the module $A/B$ be finitely presented. Finally, we demonstrate that the results do not readily extend to non-associative algebras, by exhibiting an ideal of co-dimension $1$ of the free Lie algebra of rank 2 which is not finitely generated as a Lie algebra.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1354 ◽  
Author(s):  
Hassan Almusawa ◽  
Ryad Ghanam ◽  
Gerard Thompson

In this investigation, we present symmetry algebras of the canonical geodesic equations of the indecomposable solvable Lie groups of dimension five, confined to algebras A 5 , 7 a b c to A 18 a . For each algebra, the related system of geodesics is provided. Moreover, a basis for the associated Lie algebra of the symmetry vector fields, as well as the corresponding nonzero brackets, are constructed and categorized.


2009 ◽  
Vol 19 (03) ◽  
pp. 337-345 ◽  
Author(s):  
JUAN C. BENJUMEA ◽  
JUAN NÚÑEZ ◽  
ÁNGEL F. TENORIO

This paper shows an algorithm which computes the law of the Lie algebra associated with the complex Lie group of n × n upper-triangular matrices with exponential elements in their main diagonal. For its implementation two procedures are used, respectively, to define a basis of the Lie algebra and the nonzero brackets in its law with respect to that basis. These brackets constitute the final output of the algorithm, whose unique input is the matrix order n. Besides, its complexity is proved to be polynomial and some complementary computational data relative to its implementation are also shown.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jonas Deré ◽  
Marcos Origlia

Abstract Every simply connected and connected solvable Lie group 𝐺 admits a simply transitive action on a nilpotent Lie group 𝐻 via affine transformations. Although the existence is guaranteed, not much is known about which Lie groups 𝐺 can act simply transitively on which Lie groups 𝐻. So far, the focus was mainly on the case where 𝐺 is also nilpotent, leading to a characterization depending only on the corresponding Lie algebras and related to the notion of post-Lie algebra structures. This paper studies two different aspects of this problem. First, we give a method to check whether a given action ρ : G → Aff ⁡ ( H ) \rho\colon G\to\operatorname{Aff}(H) is simply transitive by looking only at the induced morphism φ : g → aff ⁡ ( h ) \varphi\colon\mathfrak{g}\to\operatorname{aff}(\mathfrak{h}) between the corresponding Lie algebras. Secondly, we show how to check whether a given solvable Lie group 𝐺 acts simply transitively on a given nilpotent Lie group 𝐻, again by studying properties of the corresponding Lie algebras. The main tool for both methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull, which we also define on the level of Lie algebras. As an application, we give a full description of the possibilities for simply transitive actions up to dimension 4.


Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Rutwig Campoamor-Stursberg ◽  
Francisco Oviaño García

The generic structure and some peculiarities of real rank one solvable Lie algebras possessing a maximal torus of derivations with the eigenvalue spectrum spec ( t ) = 1 , k , k + 1 , ⋯ , n + k − 3 , n + 2 k − 3 for k ≥ 2 are analyzed, with special emphasis on the resulting Lie algebras for which the second Chevalley cohomology space vanishes. From the detailed inspection of the values k ≤ 5 , some series of cohomologically rigid algebras for arbitrary values of k are determined.


Author(s):  
E. M. Patterson

SynopsisBy examining certain connections between the derivatives and the powers of a Lie algebra, bounds are obtained for the indices of nilpotent Lie algebras over an arbitrary field. The results are used to obtain bounds for the indices of solvable Lie algebras over a field of characteristic zero.


Sign in / Sign up

Export Citation Format

Share Document