2-Local Isometries on Spaces of Lipschitz Functions

2011 ◽  
Vol 54 (4) ◽  
pp. 680-692 ◽  
Author(s):  
A. Jiménez-Vargas ◽  
Moisés Villegas-Vallecillos

AbstractLet (X, d) be a metric space, and let Lip(X) denote the Banach space of all scalar-valued bounded Lipschitz functions ƒ on X endowed with one of the natural normswhere L(ƒ) is the Lipschitz constant of ƒ. It is said that the isometry group of Lip(X) is canonical if every surjective linear isometry of Lip(X) is induced by a surjective isometry of X. In this paper we prove that if X is bounded separable and the isometry group of Lip(X) is canonical, then every 2-local isometry of Lip(X) is a surjective linear isometry. Furthermore, we give a complete description of all 2-local isometries of Lip(X) when X is bounded.

1968 ◽  
Vol 20 ◽  
pp. 1150-1164 ◽  
Author(s):  
Ashoke K. Roy

Let X be a compact metric space with metric d. A complex-valued function ƒ on X is said to satisfy a Lipschitz condition if, for all points x and y of X, there exists a constant K such thatThe smallest constant for which the above inequality holds is called the Lipschitz constant for ƒ and is denoted by ||ƒ||d, that is,


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


1992 ◽  
Vol 34 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Werner J. Ricker

Let Σ be a σ-algebra of subsets of some set Ω and let μ:Σ→[0,∞] be a σ-additive measure. If Σ(μ) denotes the set of all elements of Σ with finite μ-measure (where sets equal μ-a.e. are identified in the usual way), then a metric d can be defined in Σ(μ) by the formulahere E ΔF = (E\F) ∪ (F\E) denotes the symmetric difference of E and F. The measure μ is called separable whenever the metric space (Σ(μ), d) is separable. It is a classical result that μ is separable if and only if the Banach space L1(μ), is separable [8, p.137]. To exhibit non-separable measures is not a problem; see [8, p. 70], for example. If Σ happens to be the σ-algebra of μ-measurable sets constructed (via outer-measure μ*) by extending μ defined originally on merely a semi-ring of sets Γ ⊆ Σ, then it is also classical that the countability of Γ guarantees the separability of μ and hence, also of L1(μ), [8, p. 69].


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


2014 ◽  
Vol 58 (3) ◽  
pp. 631-636
Author(s):  
Fabio Cavalletti

AbstractLet (X, d) be a quasi-convex, complete and separable metric space with reference probability measure m. We prove that the set of real-valued Lipschitz functions with non-zero pointwise Lipschitz constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded functions. The result is the metric analogous to a result proved for real-valued Lipschitz maps defined on ℝ2 by Alberti et al.


Author(s):  
Julio Becerra-Guerrero ◽  
María Cueto-Avellaneda ◽  
Francisco J. Fernández-Polo ◽  
Antonio M. Peralta

We prove that if $M$ is a $\text{JBW}^{\ast }$ -triple and not a Cartan factor of rank two, then $M$ satisfies the Mazur–Ulam property, that is, every surjective isometry from the unit sphere of $M$ onto the unit sphere of another real Banach space $Y$ extends to a surjective real linear isometry from $M$ onto $Y$ .


1979 ◽  
Vol 85 (2) ◽  
pp. 317-324 ◽  
Author(s):  
C. M. Edwards

A JB-algebra A is a real Jordan algebra, which is also a Banach space, the norm in which satisfies the conditions thatandfor all elements a and b in A. It follows from (1.1) and (l.2) thatfor all elements a and b in A. When the JB-algebra A possesses an identity element then A is said to be a unital JB-algebra and (1.2) is equivalent to the condition thatfor all elements a and b in A. For the general theory of JB-algebras the reader is referred to (2), (3), (7) and (10).


Author(s):  
J. Solà-Morales ◽  
M. València

SynopsisThe semilinear damped wave equationssubject to homogeneous Neumann boundary conditions, admit spatially homogeneous solutions (i.e. u(x, t) = u(t)). In order that every solution tends to a spatially homogeneous one, we look for conditions on the coefficients a and d, and on the Lipschitz constant of f with respect to u.


2000 ◽  
Vol 43 (3) ◽  
pp. 511-528 ◽  
Author(s):  
Jörg Eschmeier

AbstractLet T and S be quasisimilar operators on a Banach space X. A well-known result of Herrero shows that each component of the essential spectrum of T meets the essential spectrum of S. Herrero used that, for an n-multicyclic operator, the components of the essential resolvent set with maximal negative index are simply connected. We give new and conceptually simpler proofs for both of Herrero's results based on the observation that on the essential resolvent set of T the section spaces of the sheavesare complete nuclear spaces that are topologically dual to each other. Other concrete applications of this result are given.


2017 ◽  
Vol 165 (3) ◽  
pp. 467-473 ◽  
Author(s):  
NIK WEAVER

AbstractFor any metric space X, the predual of Lip(X) is unique. If X has finite diameter or is complete and convex—in particular, if it is a Banach space—then the predual of Lip0(X) is unique.


Sign in / Sign up

Export Citation Format

Share Document